1.Neutrophil extracellular traps activates focal adhesion kinase by upregulating MMP9 expression to promote proliferation and migration of mouse colorectal cancer cells.
Yi HE ; Songlin HOU ; Changyuan MEMG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):416-422
		                        		
		                        			
		                        			Objective To investigate how the neutrophil extracellular traps (NETs) affect the proliferation and migration of mouse MC38 colorectal cancer cells and its mechanism. Methods Spleen neutrophils were extracted in mouse, followed by collection of NETs after ionomycin stimulation in vitro. The proliferation of MC38 cell was detected by CCK-8 assay, and migration ability were detected by TranswellTM and cell scratch assay, after co-incubation with MC38 cells. The mRNA expression of cellular matrix metalloproteinase 2 (MMP2) and MMP9 were detected by real-time fluorescence quantitative PCR, and the expression of MMP2, MMP9 and focal adhesion kinase (FAK), phosphorylated FAK protein were detected by Western blot. After silencing MMP9 using small interfering RNA (siRNA), the effect of NETs on the proliferation and migration ability of MC38 cells and the altered expression of related molecules were examined by previous approach. Results NETs promoted the proliferation and migration of MC38 cells and up-regulated the MMP9 expression and FAK phosphorylation. Silencing MMP9 inhibited the promotion of MC38 proliferation and migration by NETs and suppressed FAK phosphorylation. Conclusion NETs up-regulates MMP9 expression in MC38 cells, activates FAK signaling pathway and promotes tumor cell proliferation and migration.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Focal Adhesion Protein-Tyrosine Kinases/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 2/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9/metabolism*
		                        			;
		                        		
		                        			Extracellular Traps/metabolism*
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			RNA, Small Interfering/genetics*
		                        			;
		                        		
		                        			Colorectal Neoplasms/genetics*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			
		                        		
		                        	
2.Clinicopathological features of patients with RET fusion-positive non-small cell lung cancer.
Qi TAN ; Yu JI ; Xiao Li WANG ; Zhen Wei WANG ; Xiao Wei QI ; Yan Kui LIU
Chinese Journal of Pathology 2023;52(2):124-128
		                        		
		                        			
		                        			Objective: To investigate the clinicopathological features, treatment and prognosis of patients with RET fusion positive non-small cell lung cancer (NSCLC). Methods: A total of 1 089 NSCLCs were retrieved at Affiliated Hospital of Jiangnan University from August 2018 to April 2020. In all cases, multiple gene fusion detection kits (fluorescent PCR method) were used to detect the gene status of RET, EGFR, ALK, ROS1, KRAS, BRAF and HER2; and immunohistochemical method was used to detect the expression of PD-L1 and mismatch repair related proteins. The correlation between RET-fusion and patients' age, gender, smoking history, tumor stage, grade, pathologic type, and PD-L1, mismatch repair related protein expression was analyzed. Results: There were 22 cases (2.02%) detected with RET fusion-positive in 1 089 NSCLC patients, in which 11 males and 11 females; and the median age was 63.5 years. There were 20 adenocarcinomas, including 11 acinar predominant adenocarcinoma (APA), five solid predominant adenocarcinoma (SPA) and four lepidic predominant adenocarcinoma (LPA); There were one case each of squamous cell carcinoma (non-keratinizing type) and sarcomatoid carcinoma (pleomorphic carcinoma). There were 6 and 16 patients with RET fusion-positive who were in stage Ⅰ-Ⅱ and Ⅲ-Ⅳ respectively, and 16 cases with lymph node metastasis, 11 cases with distant metastasis. Among RET fusion-positive cases, one was detected with HER2 co-mutation. The tumor proportion score of PD-L1≥1% in patients with RET fusion positive lung cancer was 54.5% (12/22). Defects in mismatch repair protein expression were not found in patients with RET fusion positive NSCLC. Four patients with RET fusions positive (two cases of APA and two cases of SPA) received pratinib-targeted therapy, and two showed benefits from this targeted therapy. Conclusions: The histological subtypes of RET fusions positive NSCLC are more likely to be APA or SPA. RET fusion-positive NSCLC patients are associated with advanced clinical stage, lymph node metastases, and they may benefit from targeted therapy with RET-specific inhibitors.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung/pathology*
		                        			;
		                        		
		                        			Lung Neoplasms/pathology*
		                        			;
		                        		
		                        			B7-H1 Antigen/genetics*
		                        			;
		                        		
		                        			Protein-Tyrosine Kinases/genetics*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-ret/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins/genetics*
		                        			;
		                        		
		                        			Adenocarcinoma/pathology*
		                        			;
		                        		
		                        			Carcinoma, Squamous Cell/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			
		                        		
		                        	
3.High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast.
Dawei XIE ; Zheng WANG ; Beibei SUN ; Liwei QU ; Musheng ZENG ; Lin FENG ; Mingzhou GUO ; Guizhen WANG ; Jihui HAO ; Guangbiao ZHOU
Frontiers of Medicine 2023;17(5):907-923
		                        		
		                        			
		                        			The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Alternative Splicing
		                        			;
		                        		
		                        			Breast Neoplasms/metabolism*
		                        			;
		                        		
		                        			Carcinoma, Pancreatic Ductal/pathology*
		                        			;
		                        		
		                        			Focal Adhesion Protein-Tyrosine Kinases/therapeutic use*
		                        			;
		                        		
		                        			Nerve Tissue Proteins/genetics*
		                        			;
		                        		
		                        			Neuroendocrine Tumors/genetics*
		                        			;
		                        		
		                        			Oncogenes
		                        			;
		                        		
		                        			Pancreatic Neoplasms/metabolism*
		                        			
		                        		
		                        	
4.Tyro3 and CDK9 as biomarkers for drug resistance to breast cancer anti-PD-1 therapies.
Chinese Journal of Oncology 2023;45(8):651-656
		                        		
		                        			
		                        			Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			c-Mer Tyrosine Kinase/metabolism*
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases/genetics*
		                        			;
		                        		
		                        			Axl Receptor Tyrosine Kinase
		                        			;
		                        		
		                        			Proto-Oncogene Proteins/metabolism*
		                        			;
		                        		
		                        			B7-H1 Antigen/genetics*
		                        			;
		                        		
		                        			Triple Negative Breast Neoplasms/genetics*
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Biomarkers
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 9
		                        			
		                        		
		                        	
5.Tyro3 and CDK9 as biomarkers for drug resistance to breast cancer anti-PD-1 therapies.
Chinese Journal of Oncology 2023;45(8):651-656
		                        		
		                        			
		                        			Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			c-Mer Tyrosine Kinase/metabolism*
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases/genetics*
		                        			;
		                        		
		                        			Axl Receptor Tyrosine Kinase
		                        			;
		                        		
		                        			Proto-Oncogene Proteins/metabolism*
		                        			;
		                        		
		                        			B7-H1 Antigen/genetics*
		                        			;
		                        		
		                        			Triple Negative Breast Neoplasms/genetics*
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Biomarkers
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 9
		                        			
		                        		
		                        	
6.Analysis of the First Diagnosis Symptom and Its Influencing Factors in 500 Patients with Lung Cancer.
Xin ZHANG ; Puyuan XING ; Xuezhi HAO ; Junling LI
Chinese Journal of Lung Cancer 2018;21(5):408-412
		                        		
		                        			BACKGROUND:
		                        			As the morbidity and mortality in lung cancer keep raising, we are here to discuss the effect of clinical features especially the initial symptomon on diagnosis and follow-up treatment of newly diagnosed lung cancer patients.
		                        		
		                        			METHODS:
		                        			The clinical features of the 500 patients with lung cancer in our hospital from March, 2017 to May, 2017 were analyzed retrospectively, including the initial symptom, stage, biomarkers, pathology, etc. RESULTS: There were 266 famle (53.3%), 372 adenocarcinoma (74.4%), 285 smokers (58%), status score of most patients (98.2%) was 0-1. 58.2% (n=291) of all the patients got biomarkers test, of which epidermal growth factor receptor (EGFR) mutations was 61.2%(178/291), anaplasticlymphoma kinase (ALK) fusion gene positive was 4.1% (12/291). Smoking status, initial symptom, pathological typing, TNM staging and EGFR mutation were the main factors affecting follow-up treatment.
		                        		
		                        			CONCLUSIONS
		                        			Patients with typical symptoms have shorter diagnosis time. Smoking status, lung cancer-related symptoms, pathology, TNM staging and EGFR mutation status are the main factors that affect the follow-up treatment.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aged, 80 and over
		                        			;
		                        		
		                        			Anaplastic Lymphoma Kinase
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			ErbB Receptors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			diagnosis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Smokers
		                        			;
		                        		
		                        			statistics & numerical data
		                        			
		                        		
		                        	
7.AATYK is a Novel Regulator of Oligodendrocyte Differentiation and Myelination.
Chunxia JIANG ; Wanqing YANG ; Zhihong FAN ; Peng TENG ; Ruyi MEI ; Junlin YANG ; Aifen YANG ; Mengsheng QIU ; Xiaofeng ZHAO
Neuroscience Bulletin 2018;34(3):527-533
		                        		
		                        			
		                        			Oligodendrocytes (OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK (apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYK-deficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Newborn
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Cuprizone
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Demyelinating Diseases
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Embryo, Mammalian
		                        			;
		                        		
		                        			Gene Expression Regulation, Developmental
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Ki-67 Antigen
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Myelin Basic Protein
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Myelin Proteolipid Protein
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Myelin Sheath
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oligodendroglia
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			
		                        		
		                        	
8.Expression of AXL enhances docetaxel-resistance of prostate cancer cells.
Jian-Zhong LIN ; Jia-Geng ZHU ; Hong-Fei WU ; Jiu-Ming LI ; Wei DE ; Zeng-Jun WANG
National Journal of Andrology 2017;23(4):302-308
		                        		
		                        			Objective:
		                        			To explore the effect of the AXL expression on the chemosensitivity of prostate cancer PC-3 and DU145 cells to docetaxel and possible mechanisms.
		                        		
		                        			METHODS:
		                        			Using Western blot, we examined the expressions of the AXL protein, p-AXL and Gas6 in the docetaxel-resistant PC-3 (PC-3-DR) and DU145 (DU145-DR) cells stimulated with gradually increased concentrations of docetaxel. We transfected the PC-3 and DU145 cells with negative NC ShRNA and AXL-ShRNA, respectively, which were confirmed to be effective, detected the proliferation, apoptosis and cycle distribution of the cells by CCK8, MTT and flow cytometry after treated with the AXL-inhibitor MP470 and/or docetaxel, and determined the expression of the ABCB1 protein in the PC-3-DR and DU145-DR cells after intervention with the AXL-inhibitor R428 and/or docetaxel.
		                        		
		                        			RESULTS:
		                        			The expression of the AXL protein in the PC-3 and DU145 cells was significantly increased after docetaxel treatment (P <0.05). The expressions AXL and p-AXL were remarkably higher (P <0.05) while that of Gas6 markedly lower (P <0.05) in the PC-3 and DU145 than in the PC-3-DR and DU145-DR cells. The inhibitory effect of docetaxel on the proliferation and its enhancing effect on the apoptosis of the PC-3 and DU145 cells were significantly decreased at 48 hours after AXL transfection (P <0.05). MP470 obviously suppressed the growth and promoted the apoptosis of the PC-3-DR and DU145-DR cells, with a higher percentage of the cells in the G2/M phase when combined with docetaxel than used alone (P <0.05). R428 markedly reduced the expression of ABCB1 in the PC-3-DR and DU145-DR cells, even more significantly in combination with docetaxel than used alone (P <0.05).
		                        		
		                        			CONCLUSIONS
		                        			The elevated expression of AXL enhances the docetaxel-resistance of PC-3 and DU145 prostate cancer cells and AXL intervention improves their chemosensitivity to docetaxel, which may be associated with the increased cell apoptosis in the G2/M phase and decreased expression of ABCB1.
		                        		
		                        		
		                        		
		                        			ATP Binding Cassette Transporter, Subfamily B, Member 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Count
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Docetaxel
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Intercellular Signaling Peptides and Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Prostatic Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pyrimidines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Taxoids
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
9.Role of axl in preeclamptic EPCs functions.
Ying HU ; Xiao-Ping LIU ; Xiao-Xia LIU ; Yan-Fang ZHENG ; Wei-Fang LIU ; Ming-Lian LUO ; Hui GAO ; Ying ZHAO ; Li ZOU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):395-401
		                        		
		                        			
		                        			Axl encodes the tyrosine-protein kinase receptor, participating in the proliferation and migration of many cells. This study examined the role of Axl in functions of endothelial progenitor cells (EPCs). Axl was detected by RT-PCR and Western blotting in both placentas and EPCs from normal pregnancy and preeclampsia patients. The Axl inhibitor, BMS777-607, was used to inhibit the Axl signalling pathway in EPCs. Cell proliferation, differentiation, migration and adhesion were measured by CCK-8 assay, cell differentiation assay, Transwell assay, and cell adhesion assay, respectively. Results showed the expression levels of Axl mRNA and protein were significantly higher in both placentas and EPCs from preeclampsia patients than from normal pregnancy (P<0.05). After treatment with BMS777-607, proliferation, differentiation, migration and adhesion capability of EPCs were all significantly decreased. Our study suggests Axl may play a role in the function of EPCs, thereby involving in the pathogenesis of preeclampsia.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aminopyridines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			Case-Control Studies
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fetal Blood
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Gestational Age
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Placenta
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Pre-Eclampsia
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Primary Cell Culture
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pyridones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
10.A meta-analysis reveals prognostic role of programmed death ligand-1 in Asian patients with non-small cell lung cancer.
Xiao-Yan HU ; Wei ZHANG ; Yue HU ; Yong ZHANG ; Rui GONG ; Jin-Yan LIANG ; Li LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):313-320
		                        		
		                        			
		                        			Accumulating studies explored the clinicopathologic and prognostic value of programmed death ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC), but the results were controversial. We therefore conducted a meta-analysis to evaluate the predictive role of PD-L1 in NSCLC patients. We systematically collected relevant studies from PubMed, Embase, Web of Science and China National Knowledge Infrastructure. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS), and odd ratios (ORs) with 95% CIs for clinicopathologic factors were calculated. A total of 15 studies involving 3605 patients were included in this meta-analysis. The results showed no prognostic role of PD-L1 in the whole patients (HR=1.60, 95% CI: 0.88-2.89, P=0.123). Subgroup analysis showed that PD-L1 was associated with decreased OS in Asian patients (HR=2.00, 95% CI: 1.55-2.57, P<0.001). Among all the clinicopathologic factors, PD-L1 overexpression was significantly in relevance with poor tumor cell differentiation (HR=1.84, 95% CI: 1.49-2.28, P<0.001), late stage (HR=1.21, 95% CI: 1.02-1.43, P=0.026) and anaplastic lymphoma kinase (ALK) translocation (HR=2.63, 95% CI: 1.08-6.40, P=0.034), but not with other factors. In conclusion, our meta-analysis demonstrated that PD-L1 has a prognostic role in Asian patients with NSCLC.
		                        		
		                        		
		                        		
		                        			Asian Continental Ancestry Group
		                        			;
		                        		
		                        			B7-H1 Antigen
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Biomarkers, Tumor
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung
		                        			;
		                        		
		                        			diagnosis
		                        			;
		                        		
		                        			ethnology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			mortality
		                        			;
		                        		
		                        			European Continental Ancestry Group
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			diagnosis
		                        			;
		                        		
		                        			ethnology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			mortality
		                        			;
		                        		
		                        			Neoplasm Grading
		                        			;
		                        		
		                        			Neoplasm Staging
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Proportional Hazards Models
		                        			;
		                        		
		                        			Protein Transport
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail