1.Expression, purification, and characterization of the histidine kinase CarS from Fusobacterium nucleatum.
Zhuting LI ; Xian SHI ; Ruochen FAN ; Lulu WANG ; Tingting BU ; Wei ZHENG ; Xuqiang ZHANG ; Chunshan QUAN
Chinese Journal of Biotechnology 2023;39(4):1596-1608
		                        		
		                        			
		                        			Fusobacterium nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. The two-component system plays an important role in the regulation and expression of genes related to pathogenic resistance and pathogenicity. In this paper, we focused on the CarRS two-component system of F. nucleatum, and the histidine kinase protein CarS was recombinantly expressed and characterized. Several online software such as SMART, CCTOP and AlphaFold2 were used to predict the secondary and tertiary structure of the CarS protein. The results showed that CarS is a membrane protein with two transmembrane helices and contains 9 α-helices and 12 β-folds. CarS protein is composed of two domains, one is the N-terminal transmembrane domain (amino acids 1-170), the other is the C-terminal intracellular domain. The latter is composed of a signal receiving domain (histidine kinases, adenylyl cyclases, methyl-accepting proteins, prokaryotic signaling proteins, HAMP), a phosphate receptor domain (histidine kinase domain, HisKA), and a histidine kinase catalytic domain (histidine kinase-like ATPase catalytic domain, HATPase_c). Since the full-length CarS protein could not be expressed in host cells, a fusion expression vector pET-28a(+)-MBP-TEV-CarScyto was constructed based on the characteristics of secondary and tertiary structures, and overexpressed in Escherichia coli BL21-Codonplus(DE3)RIL. CarScyto-MBP protein was purified by affinity chromatography, ion-exchange chromatography, and gel filtration chromatography with a final concentration of 20 mg/ml. CarScyto-MBP protein showed both protein kinase and phosphotransferase activities, and the MBP tag had no effect on the function of CarScyto protein. The above results provide a basis for in-depth analysis of the biological function of the CarRS two-component system in F. nucleatum.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Histidine Kinase/metabolism*
		                        			;
		                        		
		                        			Fusobacterium nucleatum/metabolism*
		                        			;
		                        		
		                        			Automobiles
		                        			;
		                        		
		                        			Protein Kinases/genetics*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Colorectal Neoplasms
		                        			
		                        		
		                        	
2.Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway.
Yi YANG ; Yan-E HU ; Mao-Yuan ZHAO ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(9):2334-2342
		                        		
		                        			
		                        			We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein
		                        			;
		                        		
		                        			Vimentin/metabolism*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Colorectal Neoplasms/genetics*
		                        			;
		                        		
		                        			Cadherins/genetics*
		                        			;
		                        		
		                        			Cell Movement
		                        			
		                        		
		                        	
3.Difference of lipid-lowering efficacy of "Xinjianqu" before and after fermentation and its mechanism based on LKB1-AMPK pathway and 16S rDNA sequencing technology.
De-Hua LI ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Jian-Guang ZHU ; Meng-Mei SUN ; Jia QIAO
China Journal of Chinese Materia Medica 2023;48(8):2146-2159
		                        		
		                        			
		                        			On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Cholesterol, LDL
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Aquaporin 2/metabolism*
		                        			;
		                        		
		                        			Lipid Metabolism
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Lipids
		                        			;
		                        		
		                        			Hyperlipidemias/genetics*
		                        			;
		                        		
		                        			Adenosine Triphosphate/pharmacology*
		                        			;
		                        		
		                        			Diet, High-Fat/adverse effects*
		                        			
		                        		
		                        	
4.Alcohol extract of root and root bark of Toddalia asiatica alleviates CIA in rats through anti-inflammatory and proapoptotic effects.
Zong-Xing ZHANG ; Lu JIANG ; Dao-Zhong LIU ; Bo-Nan TAO ; Zi-Ming HOU ; Meng-Jie TIAN ; Jia FENG ; Lin YUAN
China Journal of Chinese Materia Medica 2023;48(8):2203-2211
		                        		
		                        			
		                        			This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1β and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Caspase 3/genetics*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			;
		                        		
		                        			Plant Bark
		                        			;
		                        		
		                        			Anti-Inflammatory Agents/therapeutic use*
		                        			;
		                        		
		                        			Arthritis, Experimental/chemically induced*
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			Apoptosis
		                        			
		                        		
		                        	
5.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
		                        		
		                        			
		                        			This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			Nerve Growth Factor/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/drug therapy*
		                        			;
		                        		
		                        			TRPM Cation Channels/metabolism*
		                        			;
		                        		
		                        			GAP-43 Protein/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Diabetic Neuropathies/genetics*
		                        			;
		                        		
		                        			Fibrosis
		                        			
		                        		
		                        	
6.Punicalagin inhibits hepatic lipid deposition in obese mice via AMPK/ACC pathway.
Re-Na JIENSI ; Zhan-Ying CHANG ; Ruo-Hui NIU ; Xiao-Li GAO
China Journal of Chinese Materia Medica 2023;48(7):1751-1759
		                        		
		                        			
		                        			Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice, Obese
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			PPAR gamma/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Liver/metabolism*
		                        			;
		                        		
		                        			Obesity/genetics*
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Lipid Metabolism
		                        			;
		                        		
		                        			Diet, High-Fat/adverse effects*
		                        			;
		                        		
		                        			Lipids
		                        			;
		                        		
		                        			Cholesterol
		                        			
		                        		
		                        	
7.Neutrophil extracellular traps activates focal adhesion kinase by upregulating MMP9 expression to promote proliferation and migration of mouse colorectal cancer cells.
Yi HE ; Songlin HOU ; Changyuan MEMG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):416-422
		                        		
		                        			
		                        			Objective To investigate how the neutrophil extracellular traps (NETs) affect the proliferation and migration of mouse MC38 colorectal cancer cells and its mechanism. Methods Spleen neutrophils were extracted in mouse, followed by collection of NETs after ionomycin stimulation in vitro. The proliferation of MC38 cell was detected by CCK-8 assay, and migration ability were detected by TranswellTM and cell scratch assay, after co-incubation with MC38 cells. The mRNA expression of cellular matrix metalloproteinase 2 (MMP2) and MMP9 were detected by real-time fluorescence quantitative PCR, and the expression of MMP2, MMP9 and focal adhesion kinase (FAK), phosphorylated FAK protein were detected by Western blot. After silencing MMP9 using small interfering RNA (siRNA), the effect of NETs on the proliferation and migration ability of MC38 cells and the altered expression of related molecules were examined by previous approach. Results NETs promoted the proliferation and migration of MC38 cells and up-regulated the MMP9 expression and FAK phosphorylation. Silencing MMP9 inhibited the promotion of MC38 proliferation and migration by NETs and suppressed FAK phosphorylation. Conclusion NETs up-regulates MMP9 expression in MC38 cells, activates FAK signaling pathway and promotes tumor cell proliferation and migration.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Focal Adhesion Protein-Tyrosine Kinases/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 2/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9/metabolism*
		                        			;
		                        		
		                        			Extracellular Traps/metabolism*
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			RNA, Small Interfering/genetics*
		                        			;
		                        		
		                        			Colorectal Neoplasms/genetics*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			
		                        		
		                        	
8.Viral myocarditis serum exosome-derived miR-320 promotes the apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway and targeting phosphatidylinositol 3-kinase regulatory subunit 1 (Pik3r1).
Xin ZHANG ; Xueqin LI ; Liangyu ZHU ; Guoquan YIN ; Yuan ZHANG ; Kun LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):516-525
		                        		
		                        			
		                        			Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Myocytes, Cardiac
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Myocarditis/pathology*
		                        			;
		                        		
		                        			Exosomes/metabolism*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			Apoptosis/genetics*
		                        			
		                        		
		                        	
9.Progress in the Study of Spindle Assembly Checkpoint in Lung Cancer.
Xinchen QIN ; Yao ZHANG ; Haijie YU ; Lijuan MA
Chinese Journal of Lung Cancer 2023;26(4):310-318
		                        		
		                        			
		                        			Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cell Cycle Proteins/metabolism*
		                        			;
		                        		
		                        			Spindle Apparatus/metabolism*
		                        			;
		                        		
		                        			Protein Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			M Phase Cell Cycle Checkpoints/genetics*
		                        			;
		                        		
		                        			Lung Neoplasms/metabolism*
		                        			
		                        		
		                        	
10.Eucommia lignans alleviate the progression of diabetic nephropathy through mediating the AR/Nrf2/HO-1/AMPK axis in vivo and in vitro.
Qi HUANG ; Yinfan ZHANG ; Yueping JIANG ; Ling HUANG ; Qiong LIU ; Dongsheng OUYANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):516-526
		                        		
		                        			
		                        			Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/genetics*
		                        			;
		                        		
		                        			Diabetes Mellitus
		                        			;
		                        		
		                        			Diabetic Nephropathies/prevention & control*
		                        			;
		                        		
		                        			Eucommiaceae/metabolism*
		                        			;
		                        		
		                        			Lignans/therapeutic use*
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Tandem Mass Spectrometry
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail