1.Expert Consensus on Targeted Therapy of NSCLC with MET Exon 14 Skipping Mutation.
Chinese Journal of Lung Cancer 2023;26(6):416-428
The mesenchymal-epithelial transition factor (MET) exon 14 skipping mutation is mainly caused by the loss of c-Cbl tyrosine binding site. This mutation could result in a decrease in the degradation rate of proteasome-mediated MET proteins, trigger continuous activation of downstream pathways, and ultimately lead to tumorigenesis. The incidence of MET exon 14 skipping mutation in patients with non-small cell lung cancer (NSCLC) is 0.9% to 4.0%. Patients with advanced NSCLC are recommended to test MET exon 14 skipping mutations who may benefit from MET inhibitors-targeted therapy. MET inhibitors have a high objective response rate and good safety profiles, which could prolong the survival of NSCLC patients with MET exon 14 skipping mutations. The Lung Cancer Specialty Committee of Chinese Elderly Health Care Association organized multidisciplinary experts to give suggestions on the important issues of clinical aspects for targeted therapy of MET exon 14 skipping mutation in NSCLC according to the clinical practice experiences and evidences based medicine. "Expert Consensus on Targeted Therapy of NSCLC with MET Exon 14 Skipping Mutation" is proposed, aiming to provide standardized guidances for the clinical practice of Chinese physicians.
.
Humans
;
Aged
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Consensus
;
Proto-Oncogene Proteins c-met/genetics*
;
Mutation
;
Exons
;
Protein Kinase Inhibitors/therapeutic use*
2.Progress and challenges in RET-targeted cancer therapy.
Xueqing HU ; Ujjwol KHATRI ; Tao SHEN ; Jie WU
Frontiers of Medicine 2023;17(2):207-219
The rearranged during transfection (RET) is a receptor protein tyrosine kinase. Oncogenic RET fusions or mutations are found most often in non-small cell lung cancer (NSCLC) and in thyroid cancer, but also increasingly in various types of cancers at low rates. In the last few years, two potent and selective RET protein tyrosine kinase inhibitors (TKIs), pralsetinib (BLU-667) and selpercatinib (LOXO-292, LY3527723) were developed and received regulatory approval. Although pralsetinib and selpercatinib gave high overall response rates (ORRs), < 10% of patients achieved a complete response (CR). The RET TKI-tolerated residual tumors inevitably develop resistance by secondary target mutations, acquired alternative oncogenes, or MET amplification. RET G810 mutations located at the kinase solvent front site were identified as the major on-target mechanism of acquired resistance to both selpercatinib and pralsetinib. Several next-generation of RET TKIs capable of inhibiting the selpercatinib/pralsetinib-resistant RET mutants have progressed to clinical trials. However, it is likely that new TKI-adapted RET mutations will emerge to cause resistance to these next-generation of RET TKIs. Solving the problem requires a better understanding of the multiple mechanisms that support the RET TKI-tolerated persisters to identify a converging point of vulnerability to devise an effective co-treatment to eliminate the residual tumors.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Neoplasm, Residual
;
Lung Neoplasms/genetics*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
;
Proto-Oncogene Proteins c-ret/genetics*
3.Chinese multidisciplinary expert consensus on the management of adverse drug reactions associated with savolitinib.
Li ZHANG ; Yong Sheng WANG ; Li Zhu LIN ; Yong Feng YU ; Shun LU
Chinese Journal of Oncology 2023;45(4):298-312
MET gene is a proto-oncogene, which encodes MET protein with tyrosine kinase activity. After binding to its ligand, hepatocyte growth factor, MET protein can induce MET dimerization and activate downstream signaling pathways, which plays a crucial role in tumor formation and metastasis. Savolitinib, as a specific tyrosine kinase inhibitor (TKI) targeting MET, selectively inhibits the phosphorylation of MET kinase with a significant inhibitory effect on tumors with MET abnormalities. Based on its significant efficacy shown in the registration studies, savolitinib was approved for marketing in China on June 22, 2021 for the treatment of advanced non-small cell lung cancer with MET 14 exon skipping mutations. In addition, many studies have shown that MET TKIs are equally effective in patients with advanced solid tumors with MET gene amplification or MET protein overexpression, and relevant registration clinical studies are ongoing. The most common adverse reactions during treatment with savolitinib include nausea, vomiting, peripheral edema, pyrexia, and hepatotoxicity. Based on two rounds of extensive nationwide investigations to guide clinicians, the consensus is compiled to use savolitinib rationally, prevent and treat various adverse reactions scientifically, and improve the clinical benefits and quality of life of patients. This consensus was prepared under the guidance of multidisciplinary experts, especially including the whole-process participation and valuable suggestions of experts in Traditional Chinese Medicine, thus reflecting the clinical treatment concept of integrated Chinese and western medicines.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/pathology*
;
Consensus
;
Quality of Life
;
Proto-Oncogene Proteins c-met/genetics*
;
Protein Kinase Inhibitors/adverse effects*
;
Drug-Related Side Effects and Adverse Reactions
;
Mutation
4.Viral myocarditis serum exosome-derived miR-320 promotes the apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway and targeting phosphatidylinositol 3-kinase regulatory subunit 1 (Pik3r1).
Xin ZHANG ; Xueqin LI ; Liangyu ZHU ; Guoquan YIN ; Yuan ZHANG ; Kun LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):516-525
Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.
Mice
;
Animals
;
Myocytes, Cardiac
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Myocarditis/pathology*
;
Exosomes/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
MicroRNAs/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis/genetics*
5.Effect of REG3A on proliferation and invasion of glioma cells by regulating PI3K/Akt signaling pathway.
Yan Chun QUAN ; Li Ying WANG ; Zeng Yong WANG ; Wei GAO ; Feng Yuan CHE
Chinese Journal of Oncology 2023;45(8):642-650
Objective: To investigate the effects of regenerating islet-derived protein 3A (REG3A) on the proliferation and invasion of glioma cells and its molecular mechanism. Methods: Five low-grade, five high-grade glioma tissues and ten adjacent tissues from glioma patients who underwent surgery at Linyi People's Hospital from October 17, 2017 to October 18, 2018 were collected. Human glioma cell lines (SF295, U251, TG905, A172, CRT) and a primary glioma cell line PT-1 were cultured in vitro. The protein and mRNA expressions of REG3A in these tissues and glioma cell lines were detected by Western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). SF295 cells were infected with lentivirus and labeled as REG3A plasmid transfection group, and the TG905 cells were transfected with si-REG3A by liposome transfection reagent and labeled as si-REG3A transfection group. At the same time, the empty transfection control and blank control groups were set up. Glioma cells were treated with REG3A recombinant protein alone or in combination with Akt1/2 inhibitors. Cell counting kit-8 (CCK-8) and cell scratch assay were used to detect cell proliferation and invasion, respectively. Western blot was used to detect the protein expression of N-cadherin, vimentin and phosphorylation of Akt (p-Akt) in REG3A overexpressed and knockdown glioma cells. Results: RT-qPCR results showed that the mRNA expression levels of REG3A in glioma cells in each group were U251 (2.129±0.13), TG905 (2.22±0.59), CRT (5.02±0.31), A172 (6.62±1.34) and PT-1 (9.18±0.61), respectively, higher than its expression in SF295 cells (1.00±0.18, P<0.001). The mRNA expression level of REG3A in high-grade glioma tissue samples (3.18±2.92) was higher than that in the control group (1.00±1.14, P=0.031) and low-grade glioma group (0.90±0.67, P=0.014). The results of western blot and immunohistochemical staining were consistent with that of RT-qPCR. The migration rate of cells in si-REG3A transfection group [(60.57±5.30)%] was lower than that of the empty transfection group [(84.18±13.63)% (P=0.038)] and blank control group [(79.65±12.09)% (P=0.076)]. The results of the scratch experiment showed that the migration rate of cells in REG3A plasmid transfected cells in the SF295 group was (96.05±6.41)%, which was significantly higher than that of empty transfected cells [(74.47±8.23)%, P=0.021)]. REG3A recombinant protein could up-regulate the expression of N-cadherin, vimentin and p-Akt in SF295 cells. Compared with the control group [(100.00±2.53)%], the proliferation rate in the REG3A recombinant protein group [(117.70±10.24)%] was significantly up-regulated, and the proliferation rate in the REG3A recombinant protein+ Akt inhibitor group [(98.31±3.64)%] was significantly lower than that of the REG3A recombinant protein group (P=0.017). The migration rate of the REG3A recombinant protein+ Akt inhibitor group was (63.35±4.06)%, which was significantly lower than (89.26±11.07)% of the REG3A recombinant protein group (P=0.019). Conclusion: REG3A can promote the proliferation and invasion of human glioma cells by activating the PI3K/Akt signaling pathway.
Humans
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Glioma/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Protein Kinase Inhibitors
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
;
Vimentin/metabolism*
6.Tyro3 and CDK9 as biomarkers for drug resistance to breast cancer anti-PD-1 therapies.
Chinese Journal of Oncology 2023;45(8):651-656
Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.
Humans
;
Animals
;
Mice
;
c-Mer Tyrosine Kinase/metabolism*
;
Receptor Protein-Tyrosine Kinases/genetics*
;
Axl Receptor Tyrosine Kinase
;
Proto-Oncogene Proteins/metabolism*
;
B7-H1 Antigen/genetics*
;
Triple Negative Breast Neoplasms/genetics*
;
Drug Resistance, Neoplasm
;
Biomarkers
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase 9
7.Effect of REG3A on proliferation and invasion of glioma cells by regulating PI3K/Akt signaling pathway.
Yan Chun QUAN ; Li Ying WANG ; Zeng Yong WANG ; Wei GAO ; Feng Yuan CHE
Chinese Journal of Oncology 2023;45(8):642-650
Objective: To investigate the effects of regenerating islet-derived protein 3A (REG3A) on the proliferation and invasion of glioma cells and its molecular mechanism. Methods: Five low-grade, five high-grade glioma tissues and ten adjacent tissues from glioma patients who underwent surgery at Linyi People's Hospital from October 17, 2017 to October 18, 2018 were collected. Human glioma cell lines (SF295, U251, TG905, A172, CRT) and a primary glioma cell line PT-1 were cultured in vitro. The protein and mRNA expressions of REG3A in these tissues and glioma cell lines were detected by Western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). SF295 cells were infected with lentivirus and labeled as REG3A plasmid transfection group, and the TG905 cells were transfected with si-REG3A by liposome transfection reagent and labeled as si-REG3A transfection group. At the same time, the empty transfection control and blank control groups were set up. Glioma cells were treated with REG3A recombinant protein alone or in combination with Akt1/2 inhibitors. Cell counting kit-8 (CCK-8) and cell scratch assay were used to detect cell proliferation and invasion, respectively. Western blot was used to detect the protein expression of N-cadherin, vimentin and phosphorylation of Akt (p-Akt) in REG3A overexpressed and knockdown glioma cells. Results: RT-qPCR results showed that the mRNA expression levels of REG3A in glioma cells in each group were U251 (2.129±0.13), TG905 (2.22±0.59), CRT (5.02±0.31), A172 (6.62±1.34) and PT-1 (9.18±0.61), respectively, higher than its expression in SF295 cells (1.00±0.18, P<0.001). The mRNA expression level of REG3A in high-grade glioma tissue samples (3.18±2.92) was higher than that in the control group (1.00±1.14, P=0.031) and low-grade glioma group (0.90±0.67, P=0.014). The results of western blot and immunohistochemical staining were consistent with that of RT-qPCR. The migration rate of cells in si-REG3A transfection group [(60.57±5.30)%] was lower than that of the empty transfection group [(84.18±13.63)% (P=0.038)] and blank control group [(79.65±12.09)% (P=0.076)]. The results of the scratch experiment showed that the migration rate of cells in REG3A plasmid transfected cells in the SF295 group was (96.05±6.41)%, which was significantly higher than that of empty transfected cells [(74.47±8.23)%, P=0.021)]. REG3A recombinant protein could up-regulate the expression of N-cadherin, vimentin and p-Akt in SF295 cells. Compared with the control group [(100.00±2.53)%], the proliferation rate in the REG3A recombinant protein group [(117.70±10.24)%] was significantly up-regulated, and the proliferation rate in the REG3A recombinant protein+ Akt inhibitor group [(98.31±3.64)%] was significantly lower than that of the REG3A recombinant protein group (P=0.017). The migration rate of the REG3A recombinant protein+ Akt inhibitor group was (63.35±4.06)%, which was significantly lower than (89.26±11.07)% of the REG3A recombinant protein group (P=0.019). Conclusion: REG3A can promote the proliferation and invasion of human glioma cells by activating the PI3K/Akt signaling pathway.
Humans
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Glioma/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Protein Kinase Inhibitors
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
;
Vimentin/metabolism*
8.Tyro3 and CDK9 as biomarkers for drug resistance to breast cancer anti-PD-1 therapies.
Chinese Journal of Oncology 2023;45(8):651-656
Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.
Humans
;
Animals
;
Mice
;
c-Mer Tyrosine Kinase/metabolism*
;
Receptor Protein-Tyrosine Kinases/genetics*
;
Axl Receptor Tyrosine Kinase
;
Proto-Oncogene Proteins/metabolism*
;
B7-H1 Antigen/genetics*
;
Triple Negative Breast Neoplasms/genetics*
;
Drug Resistance, Neoplasm
;
Biomarkers
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase 9
9.Chinese expert consensus on the diagnosis and treatment of advanced RET fusion-positive non-small cell lung cancer (2023 edition).
Chinese Journal of Oncology 2023;45(12):991-1002
Lung cancer is the most common cancer and the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. Mutations of driver genes have major impacts on incidence and progression of lung cancer. Advances in molecular biology research and clinical research have promoted the discovery of rare tumor driver genes, as well as the development and application of new targeted drugs. Nearly 1% to 2% of NSCLCs harbor RET fusions, and this patient population may not respond well to traditional treatments like chemotherapy or radiation therapy. After the new highly selective RET inhibitors pralsetinib (BLU-667) and selpercatinib (LOXO-292) entered clinical application, the diagnosis and treatment of RET fusion positive NSCLC has made breakthrough progress. At present, there is a lack of guiding consensus on the standardized diagnosis and treatment of RET fusion-positive NSCLC in China. The Society of Cancer Precision of Chinese Anti-Cancer Association and Lung Cancer Expert Group of Chinese Medical Journal, invited 38 experts form respiratory medicine, medical oncology, oncology radiotherapy and pathology to form a consensus development group. Based on the existing research evidence, combined with China's clinical practice experience, a standardized process for the diagnosis and treatment of advanced RET fusion-positive NSCLC is proposed, including suitable populations and methods for RET gene fusion, treatment drug selection, treatment of resistance to highly selective RET inhibitors, and management of adverse reactions to treatment, with a view to providing guidance for clinicians.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
China
;
Consensus
;
Lung Neoplasms/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Proto-Oncogene Proteins c-ret/genetics*
10.Moxibustion alleviates decreased ovarian reserve in rats by restoring the PI3K/AKT signaling pathway.
Hong-Xiao LI ; Ling SHI ; Shang-Jie LIANG ; Chen-Chen FANG ; Qian-Qian XU ; Ge LU ; Qian WANG ; Jie CHENG ; Jie SHEN ; Mei-Hong SHEN
Journal of Integrative Medicine 2022;20(2):163-172
OBJECTIVE:
Moxibustion, a common therapy in traditional Chinese medicine, has potential benefits for treating decreased ovarian reserve (DOR). The present study investigates the protective effect of moxibustion in a rat model of DOR and explores the possible mechanisms.
METHODS:
Sixty-four female Sprague-Dawley rats were randomly divided into four groups: control, DOR, moxibustion (MOX), and hormone replacement therapy (HRT). The DOR rat model was established by intragastric administration of 50 mg/kg Tripterygium glycoside suspension (TGS), once daily for 14 days. MOX and HRT treatments were given from the day TGS administration was initiated. The ovarian reserve function was evaluated by monitoring the estrus cycle, morphological changes in ovaries, levels of serum estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and anti-Mullerian hormone (AMH), pregnancy rate and embryo numbers. Terminal-deoxynucleotidyl transferase-mediated nick-end-labeling staining was used to identify ovarian granulosa cell apoptosis, while the protein and mRNA expressions of Bax, B-cell lymphoma-2 (Bcl-2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in ovarian tissues were examined by immunohistochemistry, Western blot and quantitative reverse transcription-polymerase chain reaction.
RESULTS:
Compared with the DOR group, MOX improved the disordered estrous cycle, promoted follicular growth, reduced the number of atresia follicles, increased the concentrations of serum E2 and AMH, and decreased serum FSH and LH concentrations. More importantly, the pregnancy rate and embryo numbers in DOR rats were both upregulated in the MOX treatment group, compared to the untreated DOR model. Further, we found that the MOX group had reduced apoptosis of ovarian granulosa cells, increased Bcl-2 expression and reduced expression of Bax. Furthermore, the PI3K/AKT signaling pathway was triggered by the moxibustion treatment.
CONCLUSION
Moxibustion improved ovarian function and suppressed apoptosis of ovarian granulosa cells in a rat model of DOR induced by TGS, and the mechanism may involve the PI3K/AKT signaling pathway.
Animals
;
Female
;
Follicle Stimulating Hormone
;
Luteinizing Hormone
;
Moxibustion
;
Ovarian Reserve
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Pregnancy
;
Proto-Oncogene Proteins c-akt/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
bcl-2-Associated X Protein/genetics*

Result Analysis
Print
Save
E-mail