1.Application of deep mutational scanning technology in protein research.
Yifan LI ; Yi WANG ; Kaili ZHANG ; Shuai LI
Chinese Journal of Biotechnology 2023;39(9):3710-3723
		                        		
		                        			
		                        			As central players in cellular structure and function, proteins have long been central themes in life science research. Analyzing the impact of protein sequence variation on its structure and function is one of the important means to study proteins. In recent years, a technology called deep mutational scanning (DMS) has been widely used in the field of protein research. It introduces thousands of mutations in parallel in specific regions of proteins through high-abundance DNA libraries. After screening, high-throughput sequencing is employed to score each mutation, revealing sequence-function correlations. Due to its high-throughput, fast and easy, and labor-saving features, DMS has become an important method for protein function research and protein engineering. This review briefly summarizes the principle of DMS technology, highlighting its applications in mammalian cells. Moreover, this review analyzes the current technical bottlenecks, aiming to facilitate relevant research.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Proteins/chemistry*
		                        			;
		                        		
		                        			Protein Engineering
		                        			;
		                        		
		                        			High-Throughput Nucleotide Sequencing/methods*
		                        			;
		                        		
		                        			Mammals/genetics*
		                        			
		                        		
		                        	
2.Enhancing thermostability of xylanase from rumen microbiota by molecular cyclization.
Kexin ZHOU ; Huan WANG ; Xintao ZHU ; Anqi ZHENG ; Nuo LI ; Xiaobao SUN ; Deying GAO ; Peipei AN ; Jiakun WANG ; Guoying QIAN ; Qian WANG
Chinese Journal of Biotechnology 2020;36(5):920-931
		                        		
		                        			
		                        			The capacity for thermal tolerance is critical for industrial enzyme. In the past decade, great efforts have been made to endow wild-type enzymes with higher catalytic activity or thermostability using gene engineering and protein engineering strategies. In this study, a recently developed SpyTag/SpyCatcher system, mediated by isopeptide bond-ligation, was used to modify a rumen microbiota-derived xylanase XYN11-6 as cyclized and stable enzyme C-XYN11-6. After incubation at 60, 70 or 80 ℃ for 10 min, the residual activities of C-XYN11-6 were 81.53%, 73.98% or 64.41%, which were 1.48, 2.92 or 3.98-fold of linear enzyme L-XYN11-6, respectively. After exposure to 60-90°C for 10 min, the C-XYN11-6 remained as soluble in suspension, while L-XYN11-6 showed severely aggregation. Intrinsic and 8-anilino-1-naphthalenesulfonic acid (ANS)-binding fluorescence analysis revealed that C-XYN11-6 was more capable of maintaining its conformation during heat challenge, compared with L-XYN11-6. Interestingly, molecular cyclization also conferred C-XYN11-6 with improved resilience to 0.1-50 mmol/L Ca²⁺ or 0.1 mmol/L Cu²⁺ treatment. In summary, we generated a thermal- and ion-stable cyclized enzyme using SpyTag/SpyCatcher system, which will be of particular interest in engineering of enzymes for industrial application.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cyclization
		                        			;
		                        		
		                        			Endo-1,4-beta Xylanases
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme Stability
		                        			;
		                        		
		                        			Industrial Microbiology
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Microbiota
		                        			;
		                        		
		                        			Protein Engineering
		                        			;
		                        		
		                        			Rumen
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			Temperature
		                        			
		                        		
		                        	
3.Current progress in innovative engineered antibodies.
Protein & Cell 2018;9(1):86-120
		                        		
		                        			
		                        			As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Bispecific
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Antibodies, Monoclonal
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drug Delivery Systems
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunoconjugates
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Engineering
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			trends
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy.
Yusuke MIMURA ; Toshihiko KATOH ; Radka SALDOVA ; Roisin O'FLAHERTY ; Tomonori IZUMI ; Yuka MIMURA-KIMURA ; Toshiaki UTSUNOMIYA ; Yoichi MIZUKAMI ; Kenji YAMAMOTO ; Tsuneo MATSUMOTO ; Pauline M RUDD
Protein & Cell 2018;9(1):47-62
		                        		
		                        			
		                        			Glycosylation of the Fc region of IgG has a profound impact on the safety and clinical efficacy of therapeutic antibodies. While the biantennary complex-type oligosaccharide attached to Asn297 of the Fc is essential for antibody effector functions, fucose and outer-arm sugars attached to the core heptasaccharide that generate structural heterogeneity (glycoforms) exhibit unique biological activities. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for the development and quality control of therapeutic antibodies, and glycan profiles of the Fc are recognized as critical quality attributes. In the past decade our understanding of the influence of glycosylation on the structure/function of IgG-Fc has grown rapidly through X-ray crystallographic and nuclear magnetic resonance studies, which provides possibilities for the design of novel antibody therapeutics. Furthermore, the chemoenzymatic glycoengineering approach using endoglycosidase-based glycosynthases may facilitate the development of homogeneous IgG glycoforms with desirable functionality as next-generation therapeutic antibodies. Thus, the Fc glycans are fertile ground for the improvement of the safety, functionality, and efficacy of therapeutic IgG antibodies in the era of precision medicine.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Monoclonal
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			pharmacokinetics
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Glycosylation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunoglobulin G
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Engineering
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Receptors, Fc
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Treatment Outcome
		                        			
		                        		
		                        	
5.In vitro-engineered non-antibody protein therapeutics.
Protein & Cell 2018;9(1):3-14
		                        		
		                        			
		                        			Antibodies have proved to be a valuable mode of therapy for numerous diseases, mainly owing to their high target binding affinity and specificity. Unfortunately, antibodies are also limited in several respects, chief amongst those being the extremely high cost of manufacture. Therefore, non-antibody binding proteins have long been sought after as alternative therapies. New binding protein scaffolds are constantly being designed or discovered with some already approved for human use by the FDA. This review focuses on protein scaffolds that are either already being used in humans or are currently being evaluated in clinical trials. Although not all are expected to be approved, the significant benefits ensure that these molecules will continue to be investigated and developed as therapeutic alternatives to antibodies. Based on the location of the amino acids that mediate ligand binding, we place all the protein scaffolds under clinical development into two general categories: scaffolds with ligand-binding residues located in exposed flexible loops, and those with the binding residues located in protein secondary structures, such as α-helices. Scaffolds that fall under the first category include adnectins, anticalins, avimers, Fynomers, Kunitz domains, and knottins, while those belonging to the second category include affibodies, β-hairpin mimetics, and designed ankyrin repeat proteins (DARPins). Most of these scaffolds are thermostable and can be easily produced in microorganisms or completely synthesized chemically. In addition, many of these scaffolds derive from human proteins and thus possess very low immunogenic potential. Additional advantages and limitations of these protein scaffolds as therapeutics compared to antibodies will be discussed.
		                        		
		                        		
		                        		
		                        			Amino Acids
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Protein Engineering
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Protein Structure, Secondary
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			therapeutic use
		                        			
		                        		
		                        	
6.Fabrication and Characterization of Polyphosphazene/Calcium Phosphate Scaffolds Containing Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in Bone Tissue Engineering.
Adnan SOBHANI ; Mohammad RAFIENIA ; Mehdi AHMADIAN ; Mohammad Reza NAIMI-JAMAL
Tissue Engineering and Regenerative Medicine 2017;14(5):525-538
		                        		
		                        			
		                        			Bone morphogenetic protein 2 has a major role in promoting bone regeneration in tissue engineering scaffolds. Growth factor release rate is a remaining crucial problem in these systems. The aim of this study was to fabricate and characterize a novel calcium phosphate/polyphosphazenes porous scaffold for the sustained release of bone morphogenetic protein 2 in bone tissue engineering. Polyphosphazenes were substituted with 2-dimethylaminoethanol and evaluated by GPC, NMR, and in vitro degradation. Calcium phosphate porous samples were prepared from hydroxyapatite nanoparticles and naphthalene using the sintering method at 1250 ℃ before being composited with poly(dimethylaminoethanol)phosphazenes containing chitosan microspheres loaded with bone morphogenetic protein 2. The characteristics and biodegradability of the product were evaluated by SEM, XRD, and in vitro degradation. Moreover, the release rate and mechanical properties of the scaffolds were investigated. The release behavior was found to be sustained since the scaffolds had been fabricated from polyphosphazenes with a low degradation rate. The release rates of the scaffolds were observed to increase with increasing chitosan microspheres content from 10 to 30%. The bioactivity of the scaffolds depended on the release rate of growth factor while bone morphogenetic protein 2 was able to induce an osteoblast proliferation. The results of cell adhesion and cell viability tests showed that scaffolds displayed a non-toxic behavior and western blot analyses confirmed that the scaffolds loaded with growth factor increased the osteogenic differentiation potential of cells when compared with scaffolds alone. These results demonstrate that these scaffolds can be successfully utilized in bone tissue engineering.
		                        		
		                        		
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Bone and Bones
		                        			;
		                        		
		                        			Bone Morphogenetic Protein 2*
		                        			;
		                        		
		                        			Bone Morphogenetic Proteins*
		                        			;
		                        		
		                        			Bone Regeneration
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			Chitosan*
		                        			;
		                        		
		                        			Durapatite
		                        			;
		                        		
		                        			In Vitro Techniques
		                        			;
		                        		
		                        			Methods
		                        			;
		                        		
		                        			Microspheres*
		                        			;
		                        		
		                        			Nanoparticles
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			Tissue Engineering*
		                        			
		                        		
		                        	
7.Polycaprolactone Triol–Citrate Scaffolds Enriched with Human Platelet Releasates Promote Chondrogenic Phenotype and Cartilage Extracellular Matrix Formation.
Hussin A ROTHAN ; Suhaeb A MAHMOD ; Ivan DJORDJEVIC ; Mojtaba GOLPICH ; Rohana YUSOF ; Simmrat SNIGH
Tissue Engineering and Regenerative Medicine 2017;14(2):93-101
		                        		
		                        			
		                        			In this paper we report the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes within elastomeric polycaprolactone triol–citrate (PCLT–CA) porous scaffold. Human-derived chondrocyte cellular content of glycosaminoglycans (GAGs) and total collagen were determined after seeding into PCLT–CA scaffold enriched with PRPr cells. Immunostaining and real time PCR was applied to evaluate the expression levels of chondrogenic and extracellular gene markers. Seeding of chondrocytes into PCLT–CA scaffold enriched with PRPr showed significant increase in total collagen and GAGs production compared with chondrocytes grown within control scaffold without PRPr cells. The mRNA levels of collagen II and SOX9 increased significantly while the upregulation in Cartilage Oligomeric Matrix Protein (COMP) expression was statistically insignificant. We also report the reduction of the expression levels of collagen I and III in chondrocytes as a consequence of proximity to PRPr cells within the scaffold. Interestingly, the pre-loading of PRPr caused an increase of expression levels of following extracellular matrix (ECM) proteins: fibronectin, laminin and integrin β over the period of 3 days. Overall, our results introduce the PCLT–CA elastomeric scaffold as a new system for cartilage tissue engineering. The method of PRPr cells loading prior to chondrocyte culture could be considered as a potential environment for cartilage tissue engineering as the differentiation and ECM formation is enhanced significantly.
		                        		
		                        		
		                        		
		                        			Blood Platelets*
		                        			;
		                        		
		                        			Cartilage Oligomeric Matrix Protein
		                        			;
		                        		
		                        			Cartilage*
		                        			;
		                        		
		                        			Chondrocytes
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Elastomers
		                        			;
		                        		
		                        			Extracellular Matrix*
		                        			;
		                        		
		                        			Fibronectins
		                        			;
		                        		
		                        			Glycosaminoglycans
		                        			;
		                        		
		                        			Humans*
		                        			;
		                        		
		                        			Laminin
		                        			;
		                        		
		                        			Methods
		                        			;
		                        		
		                        			Phenotype*
		                        			;
		                        		
		                        			Platelet-Rich Plasma
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Tissue Engineering
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
8.The expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects in rabbits with bone marrow stem cells compounded with platelet-rich fibrin.
Chunmei ZHOU ; Shuhui LI ; Naikuli WENQIGULI ; Li YU ; Lu ZHAO ; Peiling WU ; Tuerxun NIJIATI
West China Journal of Stomatology 2016;34(2):130-135
OBJECTIVEWe explored the expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects by establishing animal models with a composite of autologous bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) to repair bone defects in the extraction sockets of rabbits.
METHODSA total of 36 two-month-old male New Zealand white rabbits were randomly divided into four groups, and the left mandibular incisors of all the rabbits were subjected to minimally invasive removalunder general anesthesia. BMSC-PRF compounds, single PRF, and single BMSC were implanted in Groups A, B, and C. No material was implanted in Group D (blank control). The animals were sacrificed at 4, 8 and 12 weeks after surgery, the bone defect was immediately drawn, and the bone specimens underwent surgery after four, eight, and twelve weeks, with three rabbits per time point. The expressions of Notch1 and Wnt3a in the repair process of the bone defect were measured via immunohistochemical and immunofluorescence detection.
RESULTSImmunohistochemistry showed that the expressions of Notch1 and Wnt3a in Groups A, B, and C were higher than that in Group D at the fourth and eighth week after operation (P<0.05). By contrast, the expressions of Notch1 and Wnt3a in Group D were higher than those in Groups A, B, and C at the twelfth week (P<0.05). Immunofluorescence showed that the expressions of both Notch1 and Wnt3a reached their peaks in the new bone cells of the bone defect after four weeks following surgery and gradually disappeared when the bone was repaired completely.
CONCLUSIONNotch1 and Wnt3a signaling molecules are expressed in the process of repairing bone defects using BMSC-PRF composites and can accelerate the healing by regulating the proliferation and differentiation of BMSCs. Moreover, the expressions of Notch and Wnt are similar, and a crosstalk between them may exist it.
Alveolar Bone Grafting ; methods ; Animals ; Blood Platelets ; Bone Marrow Cells ; cytology ; Bone Transplantation ; methods ; Bone and Bones ; abnormalities ; Cell Differentiation ; Fibrin ; administration & dosage ; Male ; Mesenchymal Stem Cell Transplantation ; methods ; Mesenchymal Stromal Cells ; Platelet-Rich Plasma ; Rabbits ; Random Allocation ; Receptor, Notch1 ; metabolism ; Tissue Engineering ; Wnt Signaling Pathway ; Wnt3A Protein ; metabolism ; Wound Healing
9.Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering.
Yang LI ; Junge ZHU ; Jianjun WANG ; Huanzhang XIA ; Sheng WU
Chinese Journal of Biotechnology 2016;32(1):41-50
		                        		
		                        			
		                        			The phenylacetone monooxygenase, isolated from Thermobifida fusca, mainly catalyzes Baeyer-Villiger oxidation reaction towards aromatic compounds. Met446 plays a vital role in catalytic promiscuity, based on the structure and function of phenylacetone monooxygenase. Mutation in Met446 locus can offer enzyme new catalytic feature to activate C-H bond, oxidizing indole to finally generate indigo and indirubin, but the yield was only 1.89 mg/L. In order to further improve the biosynthesis efficiency of the whole-cell catalyst, metabolic engineering was applied to change glucose metabolism pathway of Escherichia coli. Blocking glucose isomerase gene pgi led to pentose phosphate pathway instead of the glycolytic pathway to become the major metabolic pathways of glucose, which provided more cofactor NADPH needed in enzymatic oxidation of indole. Engineering the host E. coli led to synthesis of indigo and indirubin efficiency further increased to 25 mg/L. Combination of protein and metabolic engineering to design efficient whole-cell catalysts not only improves the synthesis of indigo and indirubin, but also provides a novel strategy for whole-cell catalyst development.
		                        		
		                        		
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Indigo Carmine
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Indoles
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Industrial Microbiology
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Metabolic Engineering
		                        			;
		                        		
		                        			Metabolic Networks and Pathways
		                        			;
		                        		
		                        			Protein Engineering
		                        			
		                        		
		                        	
10.Enhanced integrin-mediated human osteoblastic adhesion to porous amorphous calcium phosphate/poly (L-lactic acid) composite.
Xin HUANG ; Yiying QI ; Weixu LI ; Zhongli SHI ; Wenjian WENG ; Kui CHEN ; Rongxin HE
Chinese Medical Journal 2014;127(19):3443-3448
BACKGROUNDThe initial osteoblastic adhesion to materials characterizes the first phase of cell-material interactions and influences all the events leading to the formation of new bone. In a previous work, we developed a novel amorphous calcium phosphate (ACP)/poly(L-lactic acid) (PLLA) material that demonstrated morphologic variations in its microstructure. The aim of this study was to investigate the initial interaction between this material and osteoblastic cells. Cellular attachment and the corresponding signal transduction pathways were investigated.
METHODSA porous ACP/PLLA composite and PLLA scaffold (as a control) were incubated in fetal bovine serum (FBS) containing phosphate-buffered saline (PBS), and the protein adsorption was determined. Osteoblastic MG63 cells were seeded on the materials and cultured for 1, 4, 8, or 24 hours. Cell attachment was evaluated using the MTS method. Cell morphology was examined using scanning electron microscopy (SEM). The expression levels of the genes encoding integrin subunits α1, α5, αv, β1, focal adhesion kinase (FAK), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were determined using real-time reverse transcription polymerase chain reaction (RT-PCR).
RESULTSThe ACP/PLLA material significantly increased the protein adsorption by 6.4-fold at 1 hour and 2.4-fold at 24 hours, compared with the pure PLLA scaffold. The attachment of osteoblastic cells to the ACP/PLLA was significantly higher than that on the PLLA scaffold. The SEM observation revealed a polygonal spread shape of cells on the ACP/ PLLA, with the filopodia adhered to the scaffold surface. In contrast, the cells on the PLLA scaffold exhibited a spherical or polygonal morphology. Additionally, real-time RT-PCR showed that the genes encoding the integrin subunits α1, αv, β1, and FAK were expressed at higher levels on the ACP/PLLA composite.
CONCLUSIONSThe ACP/PLLA composite promoted protein adsorption and osteoblastic adhesion. The enhanced cell adhesion may be mediated by the binding of integrin subunits α1, αv, and β1, and subsequently may be regulated through the FAK signal transduction pathways.
Biocompatible Materials ; chemistry ; Calcium Phosphates ; chemistry ; Cell Adhesion ; physiology ; Cells, Cultured ; Focal Adhesion Protein-Tyrosine Kinases ; metabolism ; Humans ; Integrin alpha1 ; metabolism ; Integrin alpha5 ; metabolism ; Integrin alphaV ; metabolism ; Integrin beta1 ; metabolism ; Integrins ; genetics ; metabolism ; Lactic Acid ; chemistry ; Osteoblasts ; cytology ; Porosity ; Tissue Engineering ; methods
            
Result Analysis
Print
Save
E-mail