1.C/EBPβ-Lin28a positive feedback loop triggered by C/EBPβ hypomethylation enhances the proliferation and migration of vascular smooth muscle cells in restenosis.
Xiaojun ZHOU ; Shan JIANG ; Siyi GUO ; Shuai YAO ; Qiqi SHENG ; Qian ZHANG ; Jianjun DONG ; Lin LIAO
Chinese Medical Journal 2025;138(4):419-429
BACKGROUND:
The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins β (C/EBPβ) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPβ-Lin28a axis in restenosis.
METHODS:
Restenosis and atherosclerosis rat models of type 2 diabetes ( n = 20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPβ between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPβ on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t -test and one-way analysis of variance were used for statistical analysis.
RESULTS:
C/EBPβ expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPβ overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPβ knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPβ could directly bind to Lin28a promoter. Increased C/EBPβ expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPβ and Lin28a expression accompanied by C/EBPβ hypomethylation. Additionally, Lin28a overexpression reduced C/EBPβ methylation via recruiting TET1 and enhanced C/EBPβ-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells.
CONCLUSION
Our findings suggest that the C/EBPβ-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.
Animals
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Muscle, Smooth, Vascular/metabolism*
;
Rats
;
DNA Methylation/physiology*
;
CCAAT-Enhancer-Binding Protein-beta/genetics*
;
Male
;
Myocytes, Smooth Muscle/cytology*
;
Rats, Sprague-Dawley
;
RNA-Binding Proteins/genetics*
;
Cells, Cultured
;
Coronary Restenosis/metabolism*
2.Protein aggregation in neurodegenerative diseases.
Jiannan WANG ; Lijun DAI ; Zhentao ZHANG
Chinese Medical Journal 2025;138(21):2753-2768
Neurodegenerative diseases constitute a group of chronic disorders characterized by the progressive loss of neurons. Major neurodegenerative conditions include Alzheimer's disease, Parkinson's disease, Huntington's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. Pathologically, these diseases are marked by the accumulation of aggregates formed by pathological proteins such as amyloid-β, tau, α-synuclein, and TAR DNA-binding protein 43. These proteins assemble into amyloid fibrils that undergo prion-like propagation and dissemination, ultimately inducing neurodegeneration. Understanding the biology of these protein aggregates is fundamental to elucidating the pathophysiology of neurodegenerative disorders. In this review, we summarize the molecular mechanisms underlying the aggregation and transmission of pathological proteins, the processes through which these protein aggregates trigger neurodegeneration, and the interactions between different pathological proteins. We also provide an overview of the current diagnostic approaches and therapeutic strategies targeting pathological protein aggregates.
Humans
;
Neurodegenerative Diseases/metabolism*
;
alpha-Synuclein/metabolism*
;
Amyloid beta-Peptides/metabolism*
;
tau Proteins/metabolism*
;
Protein Aggregation, Pathological/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Animals
;
Protein Aggregates/physiology*
3.SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice.
Yue XI ; Qifeng JIANG ; Wei DAI ; Chaozhen CHEN ; Yang WANG ; Xiaoyan MIAO ; Kaichen LAI ; Zhiwei JIANG ; Guoli YANG ; Ying WANG
Journal of Zhejiang University. Science. B 2025;26(3):254-268
Loss-of-function variants of low-density lipoprotein receptor-related protein 5 (LRP5) can lead to reduced bone formation, culminating in diminished bone mass. Our previous study reported transcription factor osterix (SP7)-binding sites on the LRP5 promoter and its pivotal role in upregulating LRP5 expression during implant osseointegration. However, the potential role of SP7 in ameliorating LRP5-dependent osteoporosis remained unknown. In this study, we used mice with a conditional knockout (cKO) of LRP5 in mature osteoblasts, which presented decreased osteogenesis. The in vitro experimental results showed that SP7 could promote LRP5 expression, thereby upregulating the osteogenic markers such as alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and β-catenin (P<0.05). For the in vivo experiment, the SP7 overexpression virus was injected into a bone defect model of LRP5 cKO mice, resulting in increased bone mineral density (BMD) (P<0.001) and volumetric density (bone volume (BV)/total volume (TV)) (P<0.001), and decreased trabecular separation (Tb.Sp) (P<0.05). These data suggested that SP7 could ameliorate bone defect healing in LRP5 cKO mice. Our study provides new insights into potential therapeutic opportunities for ameliorating LRP5-dependent osteoporosis.
Animals
;
Low Density Lipoprotein Receptor-Related Protein-5/metabolism*
;
Osteoporosis/genetics*
;
Mice
;
Mice, Knockout
;
Sp7 Transcription Factor/physiology*
;
Osteogenesis
;
Bone Density
;
Osteoblasts/metabolism*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Mice, Inbred C57BL
;
beta Catenin/metabolism*
4.m6A modification regulates PLK1 expression and mitosis.
Xiaoli CHANG ; Xin YAN ; Zhenyu YANG ; Shuwen CHENG ; Xiaofeng ZHU ; Zhantong TANG ; Wenxia TIAN ; Yujun ZHAO ; Yongbo PAN ; Shan GAO
Chinese Journal of Biotechnology 2025;41(4):1559-1572
N6-methyladenosine (m6A) modification plays a critical role in cell cycle regulation, while the mechanism of m6A in regulating mitosis remains underexplored. Here, we found that the total m6A modification level in cells increased during mitosis by the liquid chromatography-mass spectrometry/mass spectrometry and m6A dot blot assays. Silencing methyltransferase-like 3 (METTL3) or METTL14 results in delayed mitosis, abnormal spindle assembly, and chromosome segregation defects by the immunofluorescence. By analyzing transcriptome-wide m6A targets in HeLa cells, we identified polo-like kinase 1 (PLK1) as a key gene modified by m6A in regulating mitosis. Specifically, through immunoblotting and RNA pulldown, m6A modification inhibits PLK1 translation via YTH N6-methyladenosine RNA binding protein 1, thus mediating cell cycle homeostasis. Demethylation of PLK1 mRNA leads to significant mitotic abnormalities. These findings highlight the critical role of m6A in regulating mitosis and the potential of m6A as a therapeutic target in proliferative diseases such as cancer.
Humans
;
Polo-Like Kinase 1
;
Cell Cycle Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mitosis/physiology*
;
HeLa Cells
;
Adenosine/genetics*
;
Methyltransferases/metabolism*
;
RNA, Messenger/metabolism*
;
RNA-Binding Proteins/metabolism*
5.Research on the mechanism of hypoxia promoting the migration of lung adenocarcinoma A549 cells.
Jia-Hao JIN ; Bao-Sheng ZHAO ; Yu-Zhen LIU
Chinese Journal of Applied Physiology 2022;38(1):68-74
Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 μmol); Hypoxia combined with linoleic acid (LA) (20 μmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 μmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 μmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 μmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.
A549 Cells
;
Acetyl-CoA Carboxylase
;
Adenocarcinoma of Lung
;
Cell Hypoxia/physiology*
;
Cell Line, Tumor
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Lung Neoplasms
;
RNA/metabolism*
;
RNA, Messenger/metabolism*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
6.Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2.
Rui XIONG ; Leike ZHANG ; Shiliang LI ; Yuan SUN ; Minyi DING ; Yong WANG ; Yongliang ZHAO ; Yan WU ; Weijuan SHANG ; Xiaming JIANG ; Jiwei SHAN ; Zihao SHEN ; Yi TONG ; Liuxin XU ; Yu CHEN ; Yingle LIU ; Gang ZOU ; Dimitri LAVILLETE ; Zhenjiang ZHAO ; Rui WANG ; Lili ZHU ; Gengfu XIAO ; Ke LAN ; Honglin LI ; Ke XU
Protein & Cell 2020;11(10):723-739
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.
Animals
;
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
physiology
;
Binding Sites
;
drug effects
;
Cell Line
;
Coronavirus Infections
;
drug therapy
;
virology
;
Crotonates
;
pharmacology
;
Cytokine Release Syndrome
;
drug therapy
;
Drug Evaluation, Preclinical
;
Gene Knockout Techniques
;
Humans
;
Influenza A virus
;
drug effects
;
Leflunomide
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
Oseltamivir
;
therapeutic use
;
Oxidoreductases
;
antagonists & inhibitors
;
metabolism
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
Protein Binding
;
drug effects
;
Pyrimidines
;
biosynthesis
;
RNA Viruses
;
drug effects
;
physiology
;
Structure-Activity Relationship
;
Toluidines
;
pharmacology
;
Ubiquinone
;
metabolism
;
Virus Replication
;
drug effects
7.Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis.
Wei ZHU ; Bo-Lun ZHOU ; Li-Juan RONG ; Li YE ; Hong-Juan XU ; Yao ZHOU ; Xue-Jun YAN ; Wei-Dong LIU ; Bin ZHU ; Lei WANG ; Xing-Jun JIANG ; Cai-Ping REN
Journal of Zhejiang University. Science. B 2020;21(2):122-136
Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and is expressed in almost all cell types in humans, unlike the other proteins of the PTBP family. PTBP1 mediates several cellular processes in certain types of cells, including the growth and differentiation of neuronal cells and activation of immune cells. Its function is regulated by various molecules, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA-binding proteins. PTBP1 plays roles in various diseases, particularly in some cancers, including colorectal cancer, renal cell cancer, breast cancer, and glioma. In cancers, it acts mainly as a regulator of glycolysis, apoptosis, proliferation, tumorigenesis, invasion, and migration. The role of PTBP1 in cancer has become a popular research topic in recent years, and this research has contributed greatly to the formulation of a useful therapeutic strategy for cancer. In this review, we summarize recent findings related to PTBP1 and discuss how it regulates the development of cancer cells.
Alternative Splicing
;
Carcinogenesis
;
Glycolysis
;
Heterogeneous-Nuclear Ribonucleoproteins/physiology*
;
Humans
;
MicroRNAs/physiology*
;
Neoplasms/pathology*
;
Polypyrimidine Tract-Binding Protein/physiology*
;
RNA, Long Noncoding/physiology*
8.Roles of pattern recognition receptors in diabetic nephropathy.
Zhi-Feng ZHOU ; Lei JIANG ; Qing ZHAO ; Yu WANG ; Jing ZHOU ; Qin-Kai CHEN ; Jin-Lei LV
Journal of Zhejiang University. Science. B 2020;21(3):192-203
Diabetic nephropathy (DN) is currently the most common complication of diabetes. It is considered to be one of the leading causes of end-stage renal disease (ESRD) and affects many diabetic patients. The pathogenesis of DN is extremely complex and has not yet been clarified; however, in recent years, increasing evidence has shown the important role of innate immunity in DN pathogenesis. Pattern recognition receptors (PRRs) are important components of the innate immune system and have a significant impact on the occurrence and development of DN. In this review, we classify PRRs into secretory, endocytic, and signal transduction PRRs according to the relationship between the PRRs and subcellular compartments. PRRs can recognize related pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), thus triggering a series of inflammatory responses, promoting renal fibrosis, and finally causing renal impairment. In this review, we describe the proposed role of each type of PRRs in the development and progression of DN.
Alarmins/physiology*
;
C-Reactive Protein/physiology*
;
Diabetic Nephropathies/etiology*
;
Endocytosis
;
Humans
;
Immunity, Innate
;
Mannose-Binding Lectin/physiology*
;
Pathogen-Associated Molecular Pattern Molecules
;
Receptors, Pattern Recognition/physiology*
;
Serum Amyloid P-Component/physiology*
;
Signal Transduction
9.Inhibition of chemotherapy-related breast tumor EMT by application of redox-sensitive siRNA delivery system CSO-ss-SA/siRNA along with doxorubicin treatment.
Xuan LIU ; Xue-Qing ZHOU ; Xu-Wei SHANG ; Li WANG ; Yi LI ; Hong YUAN ; Fu-Qiang HU
Journal of Zhejiang University. Science. B 2020;21(3):218-233
Metastasis is one of the main reasons causing death in cancer patients. It was reported that chemotherapy might induce metastasis. In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis, the relationship between epithelial-mesenchymal transition (EMT) and doxorubicin (DOX) treatment was investigated and a redox-sensitive small interfering RNA (siRNA) delivery system was designed. DOX-related reactive oxygen species (ROS) were found to be responsible for the invasiveness of tumor cells in vitro, causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1 (RAC1). In order to decrease RAC1, a redox-sensitive glycolipid drug delivery system (chitosan-ss-stearylamine conjugate (CSO-ss-SA)) was designed to carry siRNA, forming a gene delivery system (CSO-ss-SA/siRNA) downregulating RAC1. CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione (GSH) and showed a significant safety. CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells, reducing the expression of RAC1 protein by 38.2% and decreasing the number of tumor-induced invasion cells by 42.5%. When combined with DOX, CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency. The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.
Amines/chemistry*
;
Antineoplastic Agents/adverse effects*
;
Breast Neoplasms/pathology*
;
Chitosan/chemistry*
;
Doxorubicin/adverse effects*
;
Drug Delivery Systems
;
Epithelial-Mesenchymal Transition/drug effects*
;
Female
;
Humans
;
MCF-7 Cells
;
Neoplasm Metastasis/prevention & control*
;
Oxidation-Reduction
;
RNA, Small Interfering/administration & dosage*
;
Reactive Oxygen Species/metabolism*
;
rac1 GTP-Binding Protein/physiology*
10.Behavioral Abnormality along with NMDAR-related CREB Suppression in Rat Hippocampus after Shortwave Exposure.
Chao YU ; Yan Xin BAI ; Xin Ping XU ; Ya Bing GAO ; Yan Hui HAO ; Hui WANG ; Sheng Zhi TAN ; Wen Chao LI ; Jing ZHANG ; Bin Wei YAO ; Ji DONG ; Li ZHAO ; Rui Yun PENG
Biomedical and Environmental Sciences 2019;32(3):189-198
OBJECTIVE:
To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms.
METHODS:
One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure.
RESULTS:
The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB.
CONCLUSION
Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.
Animals
;
Cyclic AMP Response Element-Binding Protein
;
genetics
;
metabolism
;
Dose-Response Relationship, Radiation
;
Electroencephalography
;
radiation effects
;
Hippocampus
;
radiation effects
;
Male
;
Memory
;
radiation effects
;
Nissl Bodies
;
physiology
;
radiation effects
;
Radio Waves
;
adverse effects
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
genetics
;
metabolism
;
Spatial Learning
;
radiation effects

Result Analysis
Print
Save
E-mail