1.Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: an overview.
Neeraj K SETHIYA ; Nasir M AHMED ; Raeesh M SHEKH ; Vivek KUMAR ; Pawan Kumar SINGH ; Vipin KUMAR
Journal of Integrative Medicine 2018;16(5):299-311
		                        		
		                        			
		                        			This article explores the most recent evidence-based information on ethnomedicinal, phytochemical and pharmacological understanding of Hygrophila auriculata for the treatment of various diseases and health conditions. Various ethnomedicinal writings suggest the use of the plant or its parts for the treatment of jaundice, oedema, gastrointestinal ailments, diarrhoea, dysentery, urinogenital disorder, gall stones, urinary calculi, kidney stone, leucorrhoea, rheumatism, tuberculosis, anaemia, body pain, constipation, skin disease, and as an aphrodisiac. The plant has been reported to contain flavonoids (apigenin, luteolin, ellagic acid, gallic acid and quercetin), alkaloids (asteracanthine and asteracanthicine), triterpenes (lupeol, lupenone, hentricontane and betulin), sterols (stigmasterol and asterol), minerals, amino acids, fatty acids, aliphatic esters and essential oils. Extracts and bioactive compounds from the plant have been found to possess antimicrobial, anthelmintic, antitermite, nephroprotective, hepatoprotective, central nervous system protective, antitumour, antidiabetic, anticataract, antioxidant, haematopoietic, diuretic, antinociceptive, anti-inflammatory, antipyretic, antimotility, aphrodisiac, neuroprotection, anti-endotoxin and anti-urolithiatic activities. For this paper, we reviewed patents, clinical studies, analytical studies and marketed formulations from the earliest found examples from 1887 to the end of 2017.
		                        		
		                        		
		                        		
		                        			Acanthaceae
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Anti-Infective Agents
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			Ethnopharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Medicine, Traditional
		                        			;
		                        		
		                        			Phytochemicals
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Phytotherapy
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Protective Agents
		                        			
		                        		
		                        	
2.Hydroxysafflor yellow A attenuate lipopolysaccharide-induced endothelium inflammatory injury.
Ming JIN ; Chun-Yan SUN ; Bao-Xia ZANG
Chinese journal of integrative medicine 2016;22(1):36-41
OBJECTIVEThis study observed attenuating effect of hydroxysafflor yellow A (HSYA), an effective ingredient of aqueous extract of Carthamus tinctorius L, on lipopolysaccharide (LPS)-induced endothelium inflammatory injury.
METHODSEahy926 human endothelium cell (EC) line was used; thiazolyl blue tetrazolium bromide (MTT) test was assayed to observe the viability of EC; Luciferase reporter gene assay was applied to measure nuclear factor-κB (NF-κB) p65 subunit nuclear binding activity in EC; Western blot technology was used to monitor mitogen activated protein kinase (MAPKs) and NF-κB activation. Reverse transcription polymerase chain reaction (RT-PCR) method was applied to observe intercellular cell adhesion molecule-1 (ICAM-1) and E-selectin mRNA level; EC surface ICAM-1 expression was measured with flow cytometry and leukocyte adhesion to EC was assayed with Rose Bengal spectrophotometry technology.
RESULTSHSYA protected EC viability against LPS-induced injury (P <0.05). LPS-induced NF-κB p65 subunit DNA binding (P <0.01) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) phosphorylation was inhibited by HSYA. HSYA attenuated LPS triggered ICAM-1 and E-selectin mRNA levels elevation and phosphorylation of p38 MAPK or c-Jun N-terminal kinase MAPK. HSYA also inhibited LPS-induced cell surface ICAM-1 protein expression P <0.01) and leukocyte adhesion to EC (P <0.05).
CONCLUSIONHSYA is effective to protect LPS-induced high expression of endothelium adhesive molecule and inflammatory signal transduction.
Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Cell Survival ; drug effects ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; therapeutic use ; E-Selectin ; genetics ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; pathology ; Humans ; I-kappa B Proteins ; metabolism ; Inflammation ; drug therapy ; pathology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Leukocytes ; cytology ; drug effects ; Lipopolysaccharides ; MAP Kinase Signaling System ; drug effects ; NF-KappaB Inhibitor alpha ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Protein Binding ; drug effects ; Quinones ; chemistry ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
3.Protective effects of Radix Astragali injection on multiple organs of rats with obstructive jaundice.
Zhe-Wei FEI ; Xi-Ping ZHANG ; Jie ZHANG ; Xin-Mei HUANG ; Di-Jiong WU ; Hong-Hao BI
Chinese journal of integrative medicine 2016;22(9):674-684
OBJECTIVETo investigate the protective effects and mechanisms of Radix Astragali Injection on multiple organs of rats with obstructive jaundice (OJ).
METHODSA total of 180 rats were randomly divided into the sham-operated, model control and treated groups (60 in each group). On 7, 14, 21 and 28 days after operation, the serum contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), r-glutamyl transpeptidase (r-GT), total bilirubin (TBil), direct bilirubin (DBil), blood urine nitrogen (BUN), and creatinine (CREA) were determined. And the pathological changes of livers, kidneys and lungs, and protein expressions of toll-like receptor-4 (TLR-4) of livers, intercellular adhesion molecule-1 (ICAM-1) of lungs, Bax and nuclear factor-kappa B (NF-κB), as well as apoptotic indexes of multiple organs were observed, respectively.
RESULTSThe pathological severity scores of multiple organs (including livers on 7, 14, 21 and 28 days, kidneys on 14 and 28 days, and lungs on 14 days), serum contents of ALT (14 and 21 days), AST (14 days), TBil (7, 14, 21 and 28 days), DBil (14 and 21 days), BUN (28 days), protein expressions of TLR-4 (in livers, 28 days), Bax (in livers and kidneys, 21 days), and apoptotic indexes in livers (7 and 21 days) in the treated group were significantly lower than those in the model control group (P<0.05 or P<0.01).
CONCLUSIONRadix Astragali Injection exerts protective effects on multiple organs of OJ rats by improving the pathological changes of lung, liver and kidney, decreasing the serum index of hepatic and renal function as well as inhibiting the protein expression of TLR-4 and Bax in the livers and Bax in the kidneys.
Alanine Transaminase ; blood ; Animals ; Apoptosis ; drug effects ; Aspartate Aminotransferases ; blood ; Bilirubin ; blood ; Blood Urea Nitrogen ; Creatinine ; blood ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Immunohistochemistry ; Injections ; Intercellular Adhesion Molecule-1 ; metabolism ; Jaundice, Obstructive ; blood ; drug therapy ; Kidney ; drug effects ; pathology ; Liver ; drug effects ; pathology ; Lung ; drug effects ; pathology ; Male ; NF-kappa B ; metabolism ; Organ Specificity ; drug effects ; Plant Extracts ; pharmacology ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; Toll-Like Receptor 4 ; metabolism ; bcl-2-Associated X Protein ; metabolism ; gamma-Glutamyltransferase ; metabolism
4.Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats.
Yue-Guang DU ; Li-Pei WANG ; Jun-Wen QIAN ; Ke-Na ZHANG ; Ke-Fu CHAI
Chinese journal of integrative medicine 2016;22(12):910-917
OBJECTIVETo explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats.
METHODSDiabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-β1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four.
RESULTSIn diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-β1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation.
CONCLUSIONSPNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-β1, as well as activating antioxidant proteins.
Acetylation ; drug effects ; Animals ; Antioxidants ; metabolism ; Blood Glucose ; metabolism ; Bone Morphogenetic Protein 7 ; metabolism ; Chemokine CCL2 ; metabolism ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; genetics ; physiopathology ; Gene Knockdown Techniques ; Immunohistochemistry ; Kidney ; drug effects ; pathology ; Kidney Function Tests ; Lipids ; blood ; Male ; Malondialdehyde ; metabolism ; Mesangial Cells ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; Panax notoginseng ; chemistry ; Plasminogen Activator Inhibitor 1 ; genetics ; metabolism ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; Saponins ; pharmacology ; therapeutic use ; Sirtuin 1 ; genetics ; Superoxide Dismutase ; metabolism ; Transcription Factor RelA ; metabolism ; Transcription, Genetic ; drug effects ; Transforming Growth Factor beta1 ; metabolism ; Up-Regulation ; drug effects
5.Phytochemistry, pharmacology, and clinical trials of Morus alba.
Eric Wei-Chiang CHAN ; Phui-Yan LYE ; Siu-Kuin WONG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(1):17-30
		                        		
		                        			
		                        			The present review is aimed at providing a comprehensive summary on the botany, utility, phytochemistry, pharmacology, and clinical trials of Morus alba (mulberry or sang shu). The mulberry foliage has remained the primary food for silkworms for centuries. Its leaves have also been used as animal feed for livestock and its fruits have been made into a variety of food products. With flavonoids as major constituents, mulberry leaves possess various biological activities, including antioxidant, antimicrobial, skin-whitening, cytotoxic, anti-diabetic, glucosidase inhibition, anti-hyperlipidemic, anti-atherosclerotic, anti-obesity, cardioprotective, and cognitive enhancement activities. Rich in anthocyanins and alkaloids, mulberry fruits have pharmacological properties, such as antioxidant, anti-diabetic, anti-atherosclerotic, anti-obesity, and hepatoprotective activities. The root bark of mulberry, containing flavonoids, alkaloids and stilbenoids, has antimicrobial, skin-whitening, cytotoxic, anti-inflammatory, and anti-hyperlipidemic properties. Other pharmacological properties of M. alba include anti-platelet, anxiolytic, anti-asthmatic, anthelmintic, antidepressant, cardioprotective, and immunomodulatory activities. Clinical trials on the efficiency of M. alba extracts in reducing blood glucose and cholesterol levels and enhancing cognitive ability have been conducted. The phytochemistry and pharmacology of the different parts of the mulberry tree confer its traditional and current uses as fodder, food, cosmetics, and medicine. Overall, M. alba is a multi-functional plant with promising medicinal properties.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Infective Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Clinical Trials as Topic
		                        			;
		                        		
		                        			Fruit
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypolipidemic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Morus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Plant Leaves
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Protective Agents
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
6.Protective effects of Sapindus saponins in spontaneously hypertensive rats.
Ming CHEN ; Zhi-Wu CHEN ; Zi-Jiang LONG ; Ju-Tao WANG ; Ya-Juan WANG ; Jin-Lin LIU
Chinese journal of integrative medicine 2015;21(1):36-42
OBJECTIVESTo investigate the protective effects of Sapindus saponins in spontaneously hypertensive rats, and the possible cellular and molecular mechanisms.
METHODSThirty-two 16-week-old spontaneously hypertensive rats were randomly divided into four groups (8 in each group): model group (placebo), positive control group (27 mg/kg of Captopril Tablets), Sapindus saponins groups (27 mg/kg and 108 mg/kg, respectively). Another 8 healthy Wistar-Kyoto strain (WKY) rats were used as the normal group. The animals were treated for 8 weeks. Blood pressure of rats was determined by non-invasive blood pressure meter (BP-6). Furthermore, the contents of angiotensin II (Ang II) in plasma and myocardial tissue were determined by enzyme-linked immunosorbent assay (ELISA), the gene expression of receptor angiotensin type 1 (AT1R) in aorta was determined by quantitative realtime polymerase chain reaction (qRT-PCR). The protein expression of transforming growth factor-β1 (TGF-β1) and AT1R in heart was determined by immunohistochemical staining. The protein expression of p-phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) was determined by Western blotting. The contents of interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF) in serum were determined by radioimmunoassay. And the histopathological and morphological changes of aorta and heart tissue samples were assessed semi-quantitatively by hematoxylin-eosin (HE) or Masson staining.
RESULTSThirty minutes after single or continuous treatment, systolic blood pressure (SBP) was reduced significantly in Sapindus saponins groups. And the contents of AngII, IL-1, IL-6 and TNF-α in serum, the expression of AT1R mRNA, p-p38MAPK and TGF-β1 were significantly suppressed dose-dependently (P<0.05 or P<0.01). With the Sapindus saponins treatment, compared with those of the model group, the cardiac and aortic pathological changes were ameliorated significantly.
CONCLUSIONSOur findings suggest that Sapindus saponins might have protective effects in spontaneously hypertensive rats, the cellular and molecular mechanisms of which might be relevant to the regulation of inflammatory responses mediated by p-p38MAPK signal pathway based on activated Ang II and AT1R.
Angiotensin II ; metabolism ; Animals ; Aorta ; drug effects ; pathology ; physiopathology ; Blood Pressure ; drug effects ; Collagen ; metabolism ; Female ; Hypertension ; blood ; drug therapy ; enzymology ; physiopathology ; Interleukin-1 ; blood ; Interleukin-6 ; blood ; Male ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Inbred SHR ; Receptor, Angiotensin, Type 1 ; metabolism ; Renin-Angiotensin System ; drug effects ; Sapindus ; chemistry ; Saponins ; pharmacology ; therapeutic use ; Transforming Growth Factor beta1 ; metabolism ; Tumor Necrosis Factor-alpha ; blood ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.Protective Effects of Cornus Officinalis Total Glycosides and Cornus Polysaccharides on Myocardial Mitochondria of Acute Myocardial Infarction Rats: an Experimental Study.
Dan CHEN ; Jian-jun LI ; Li-ting ZHANG ; Wei KUANG ; Ke-fang CHEN ; Xiang-ping HOU ; Hua-chao MAI ; Ke CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(9):1090-1098
OBJECTIVETo observe the effect of Cornus Officinalis total glycosides (COTG) and Cornus polysaccharides (CP) on myocardial mitochondria and expression levels of glycogen synthase kinase-3β (GSK-3β) of acute myocardial infarction (AMI) rats.
METHODSThe AMI rat model was established by ligating the left anterior descending branch of coronary artery. Rats were divided into 5 groups according to random digit table, i.e., the sham-operation group, the model group, the COTG prevention group, the CP treatment group, the COTG treatment group, 12 in each group. Normal saline was administered to rats in the normal control group and the model group by gastrogavage. Corresponding medication was respectively administered to rats in the rest 3 groups by gastrogavage. The cardiac function was detected by echocardiography and hemodynamics. The infarct size was determined by Masson trichrome staining. The expression of mitochondrial biogenesis genes such as a subunit of peroxisome proliferators-activated receptor-γ coactivator-1 (PGC-1α), PGC-1β, nuclear respiratory factor-1 (NRF-1), and GSK-3P mRNA were detected by Real-time PCR.
RESULTSCompared with the sham-operation group, the myocardial infarction size increased, cardiac function decreased, the expression of PGC-1α, PGC-1β, and NRF-1 mRNA decreased, and the expression of GSK-3β mRNA increased (all P <0. 05). Compared with the model group, myocardial infarction sizes were reduced, cardiac function was improved, the expression of NRF-1 mRNA was elevated in the COTG prevention group, the CP treatment group, the COTG treatment group; the expression of the PGC-1α and PGC-1β mRNA was elevated in the COTG prevention group and the CP treatment group; the expression of GSK-3β mRNA was reduced in the CP treatment group (all P <0. 05). Compared with the CP prevention group, fractional shortening (FS) and aortic systolic blood pressure (SBP) increased in the CP treatment group; ejection fraction (EF) decreased in the CP treatment group; the expression of PGC-1α, PGC-1β, NRF-1 mRNA were reduced in the the CP treatment group and the COTG treatment group; the expression of GSK-3β mRNA decreased in the CP treatment group (all P <0. 05). Compared with the COTG treatment group, FS, EF, left ventricular end systolic pressure (LVESP), SBP, and the expression of GSK-3β mRNA were reduced in the CP treatment group (P <0. 05).
CONCLUSIONSCOTG and CP could improve cardiac function, reduce the myocardial infarction area, and promote biogenesis of myocardial mitochondria. Their protective effects on the mitochondria of cadiocytes might be achieved by GSK-3β signalina pathway.
Animals ; Cornus ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinase 3 beta ; Glycosides ; Heat-Shock Proteins ; Mitochondria, Heart ; physiology ; Myocardial Infarction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Polysaccharides ; Protective Agents ; pharmacology ; therapeutic use ; RNA, Messenger ; Rats ; Rats, Sprague-Dawley ; Transcription Factors
8.Comparison of protective effects of safflor injection and extract of Ginkgo biloba on lung ischemia/reperfusion injury in rabbits.
Xiao-xi TIAN ; Bo-liang WANG ; Yi-zhan CAO ; Yue-xia ZHONG ; Yan-yang TU ; Jian-bo XIAO ; Qian-feng HE ; Li-na ZHAI
Chinese journal of integrative medicine 2015;21(3):229-233
OBJECTIVETo observe the protective effects of safflor Injection (SI) and extract of Ginkgo biloba (EGB) on lung ischemia-reperfusion injury (LIRI) and investigate its mechanism.
METHODSIn vivo rabbit model of LIRI was reconstructed. Forty rabbits were randomly and equally divided into four groups: sham-operation group (sham group), ischemia-reperfusion group (model group), ischemia-reperfusion plus SI group (safflor group) and ischemia-reperfusion plus EGB injection group (EGB group). Malondialdehyde (MDA) content, superoxide dismutase (SOD) and xanthine oxidase (XO) activity in serum were measured. The wet/dry weight ratio (W/D) of the lung tissue and activity of myeloperoxidase (MPO) were also tested. Ultrastructure change of the lung tissue was observed by the electron microscope. The expression of intercellular adhesion molecule-1 (ICAM-1) was measured by immunohistochemistry (IHC).
RESULTSIn the model group, MDA and XO increased and SOD decreased in serum compared with the sham group (P<0.01). The values of W/D, MPO and ICAM-1 of the model group were higher than those of the sham group (P<0.01), but those of the safflor group and EGB group were significantly lower than those of the model group (P<0.01). The IHC demonstrated that ICAM-1 expression in lung tissue of the model group was significantly higher than those of the safflor group (P<0.01). Compared with safflor group, in the EGB group MDA, XO, MPO decreased, SOD and ICAM-1 expression increased (P<0.05), but the change of W/D was not statistically significant (P>0.05).
CONCLUSIONSSI and EGB may attenuate LIRI through antioxidation, inhibition of neutrophil aggregation and down-regulation of ICAM-1 expression. But EGB had more effect on the antioxidation, while SI did better on regulating ICAM-1 expression.
Animals ; Female ; Ginkgo biloba ; chemistry ; Immunohistochemistry ; Injections ; Intercellular Adhesion Molecule-1 ; metabolism ; Lung ; blood supply ; pathology ; Male ; Malondialdehyde ; metabolism ; Plant Extracts ; administration & dosage ; pharmacology ; therapeutic use ; Protective Agents ; administration & dosage ; pharmacology ; therapeutic use ; Rabbits ; Reperfusion Injury ; blood ; drug therapy ; Safflower Oil ; administration & dosage ; pharmacology ; therapeutic use ; Superoxide Dismutase ; blood ; Xanthine Oxidase ; blood
9.Qiangzhi decoction protects mice from influenza A pneumonia through inhibition of inflammatory cytokine storm.
Hai-yan ZHU ; Hai HUANG ; Xun-long SHI ; Wei ZHOU ; Pei ZHOU ; Qian-lin YAN ; Hong-guang ZHU ; Dian-wen JU
Chinese journal of integrative medicine 2015;21(5):376-383
OBJECTIVETo investigate the preventive effects of Qiangzhi Decoction (, QZD) on influenza A pneumonia through inhibition of inflammatory cytokine storm in vivo and in vitro.
METHODSOne hundred ICR mice were randomly divided into the virus control, the Tamiflu control and the QZD high-, medium-, and low-dose groups. Mice were infected intranasally with influenza virus (H1N1) at 10 median lethal dose (LD50). QZD and Tamiflu were administered intragastrically twice daily from day 0 to day 7 after infection. The virus control group was treated with distilled water alone under the same condition. The number of surviving mice was recorded daily for 14 days after viral infection. The histological damage and viral replication and the expression of inflammatory cytokines were monitored. Additionally, the suppression capacity on the secretion of regulated on activation normal T cells expressed and secreted (RANTES) and tumor necrosis factor-α (TNF-α) in epithelial and macrophage cell-lines were evaluated.
RESULTSCompared with the virus control group, the survival rate of the QZD groups significantly improved in a dose-dependent manner (P<0.05), the viral titers in lung tissue was inhibited (P<0.05), and the production of inflammatory cytokines interferon-γ (IFN-γ), interleukin-6 (IL-6), TNF-α, and intercellular adhesion molecule-1 (ICAM-1) were suppressed (P<0.05). Meanwhile, the secretion of RANTETS and TNF-α by epithelial and macrophage cell-lines was inhibited with the treatment of QZD respectively in vitro (p<0.05) CONCLUSIONS: The preventive effects of QZD on influenza virus infection might be due to its unique cytokine inhibition mechanism. QZD may have significant therapeutic potential in combination with antiviral drugs.
Animals ; Cell Line ; Cell Survival ; drug effects ; Chemokine CCL5 ; metabolism ; Chemokines ; metabolism ; Cytokines ; metabolism ; Dogs ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Hemagglutination, Viral ; drug effects ; Humans ; Inflammation ; pathology ; Influenza A Virus, H1N1 Subtype ; drug effects ; physiology ; Influenza A Virus, H1N2 Subtype ; drug effects ; Lung ; drug effects ; pathology ; Madin Darby Canine Kidney Cells ; Mice, Inbred ICR ; Orthomyxoviridae Infections ; complications ; pathology ; prevention & control ; Pneumonia ; complications ; pathology ; prevention & control ; Protective Agents ; pharmacology ; therapeutic use ; Survival Rate ; Tumor Necrosis Factor-alpha ; pharmacology
10.Protective effect of emodin against airway inflammation in the ovalbumin-induced mouse model.
Tan WANG ; Xiang-Gen ZHONG ; Yu-Hang LI ; Xu JIA ; Shu-Jing ZHANG ; Yu-Shan GAO ; Miao LIU ; Ruo-Han WU
Chinese journal of integrative medicine 2015;21(6):431-437
OBJECTIVETo investigate whether emodin exerts protective effects on mouse with allergic asthma.
METHODSA mouse model of allergic airway inflflammation was employed. The C57BL/6 mice sensitized and challenged with ovalbumin (OVA) were intraperitoneally administered 10 or 20 mg/kg emodin for 3 days during OVA challenge. Animals were sacrificed 48 h after the last challenge. Inflammatory cell count in the bronchoalveolar lavage fluid (BALF) was measured. The levels of interleukin (IL)-4, IL-5, IL-13 and eotaxin in BALF and level of immunoglobulin E (IgE) in serum were measured with enzyme-linked immuno sorbent assay kits. The mRNA expressions of IL-4, IL-5, heme oxygenase (HO)-1 and matrix metalloproteinase-9 (MMP-9) were determined by real-time quantitative polymerase chain reaction.
RESULTSEmodin induced significant suppression of the number of OVA-induced total inflammatory cells in BALF. Treatment with emodin led to significant decreases in the levels of IL-4, IL-5, IL-13 and eotaxin in BALF and total IgE level in serum. Histological examination of lung tissue revealed marked attenuation of allergen-induced lung eosinophilic inflammation. Additionally, emodin suppressed IL-4, IL-5 and MMP-9 mRNA expressions and induced HO-1 mRNA expression.
CONCLUSIONEmodin exhibits anti-inflammatory activity in the airway inflammation mouse model, supporting its therapeutic potential for the treatment of allergic bronchial asthma.
Animals ; Bronchoalveolar Lavage Fluid ; cytology ; Chemokines ; metabolism ; Disease Models, Animal ; Emodin ; chemistry ; pharmacology ; therapeutic use ; Female ; Gene Expression Regulation ; drug effects ; Heme Oxygenase-1 ; genetics ; metabolism ; Immunoglobulin E ; blood ; Interleukins ; genetics ; metabolism ; Leukocytes ; drug effects ; metabolism ; Lung ; drug effects ; metabolism ; pathology ; Matrix Metalloproteinase 9 ; genetics ; metabolism ; Mice, Inbred C57BL ; Ovalbumin ; Pneumonia ; blood ; drug therapy ; pathology ; Protective Agents ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
            
Result Analysis
Print
Save
E-mail