1.Main Factors Influencing the Platelet Spreading.
Liu-Xia YUAN ; Hong-Lei YE ; Meng-Nan YANG ; Xin-Xin GE ; Rong YAN ; Ke-Sheng DAI
Journal of Experimental Hematology 2022;30(3):919-923
OBJECTIVE:
To explore the main factors of platelet spreading and provide the foundation for related research.
METHODS:
Platelets (2×107/ml) were draw from C57BL/6J mouse and kept at 22 ℃ for 1-2 hours. Platelets (2×107/ml) were were allowed to adhere and spread on the fibrinogen-coated slides, after staining F-actin in platelets, the platelets were observed with the confocal microscopy. The effects of different concentrations of fibrinogen (10 μg/ml, 30 μg/ml, 100 μg/ml) and kinds of agonists [thrombin(0.01,0.05,0.1 U/ml), ADP(5,10,20 μmol/L), U46619(0.125,0.25,0.5 μmol/L)] on platelets were analyzed. The platelet spreading was successful if the spreading rate was higher after treated with agonists.
RESULTS:
Compared to the group which coated with 10 μg/ml and 100 μg/ml fibrinogen, the platelet density is optimal when coated with 30 μg/ml fibrinogen. In addition, under the stimulation of thrombin, ADP and U46619, the spreading rate of platelets showed a certain concentration-dependent increasing.
CONCLUSION
The platelet spreading is easily influenced by various factors, the platelet spreading can be induced successfully at 0.1 U/ml thrombin, 20 μmol/L ADP and 0.5 μmol/L U46619 on the slide coated with 30 μg/ml fibrinogen.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology*
;
Adenosine Diphosphate
;
Animals
;
Blood Platelets/physiology*
;
Fibrinogen
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Platelet Adhesiveness/physiology*
;
Thrombin/pharmacology*
2.rBMSCs/ITGA5B1 Promotes Human Vascular Smooth Muscle Cell Differentiation via Enhancing Nitric Oxide Production
Yingxin ZHANG ; Jie DING ; Cong XU ; Hongli YANG ; Peng XIA ; Shengjun MA ; Haiying CHEN
International Journal of Stem Cells 2018;11(2):168-176
BACKGROUND AND OBJECTIVES: Previous studies have shown that integrins alpha5beta1 (ITGA5B1) gene-modified rat bone marrow mesenchymal stem cells (rBMSCs) could prevent cell anoikis and increase the nitric oxide (NO) production. Here we examined the capability of rBMSCs/ITGA5B1 on the phenotype modulation of Human Pulmonary Artery Smooth Muscle Cell (HPASMC) in vitro. METHODS AND RESULTS: The synthetic (dedifferentiated) phenotype of HPASMC was induced by monocrotaline (MCT, 1μM) for 24 h and then co-cultured with rBMSCs/ITGA5B1 in a transwell culture system. The activation of NO/cGMP (nitric oxide/Guanosine-3′, 5′-cyclic monophosphate) signaling was investigated in HPASMC. The changes of pro-inflammatory factors, oxidative stress, vasodilator, vasoconstrictor, contractile and synthetic genes, and the morphological changes of HPASMC were investigated. The results of this study showed that the NO/cGMP signal, endothelial nitric oxide synthase (eNOS) expression, the expression of the vasoprotective genes heme oxygenase-1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2) were increased, but the expression of transforming growth factor-β1 (TGF-β1), CCAAT/enhancer-binding proteins delta (Cebpd), Krüppel-like factor 4 (KLF4), and activating transcription factor 4 (ATF4) were reduced in MCT treated HPASMC co-cultured with rBMSCs/ITGA5B1. The synthetic smooth muscle cells (SMCs) phenotype markers thrombospondin-1, epiregulin and the vasoconstrictor endothelin (ET)-1, thromboxane A2 receptor (TbxA2R) were down-regulated, whereas the contractile SMCs phenotype marker transgelin expression was up-regulated by rBMSCs/ITGA5B1. Furthermore, rBMSCs/ITGA5B1 promoted the morphological restoration from synthetic (dedifferentiation) to contractile (differentiation) phenotype in MCT treated HPASMC. CONCLUSIONS: rBMSCs/ITGA5B1 could inhibit inflammation and oxidative stress related genes to promote the HPASMC cell differentiation by activation NO/cGMP signal.
Activating Transcription Factor 4
;
Animals
;
Anoikis
;
Bone Marrow
;
Cell Differentiation
;
Endothelins
;
Epiregulin
;
Genes, Synthetic
;
Heme Oxygenase-1
;
Humans
;
In Vitro Techniques
;
Inflammation
;
Integrins
;
Mesenchymal Stromal Cells
;
Monocrotaline
;
Muscle, Smooth, Vascular
;
Myocytes, Smooth Muscle
;
Nitric Oxide Synthase Type III
;
Nitric Oxide
;
Oxidative Stress
;
Phenotype
;
Prostaglandin-Endoperoxide Synthases
;
Pulmonary Artery
;
Rats
;
Receptors, Thromboxane A2, Prostaglandin H2
3.The bifunctional effect of propofol on thromboxane agonist (U46619)-induced vasoconstriction in isolated human pulmonary artery.
Ning HAO ; Wang ZHAOJUN ; Sujuan KUANG ; Guangyan ZHANG ; Chunyu DENG ; Jue MA ; Jianxiu CUI
The Korean Journal of Physiology and Pharmacology 2017;21(6):591-598
Propofol is known to cause vasorelaxation of several systemic vascular beds. However, its effect on the pulmonary vasculature remains controversial. In the present study, we investigated the effects of propofol on human pulmonary arteries obtained from patients who had undergone surgery. Arterial rings were mounted in a Multi-Myograph system for measurement of isometric forces. U46619 was used to induce sustained contraction of the intrapulmonary arteries, and propofol was then applied (in increments from 10–300 µM). Arteries denuded of endothelium, preincubated or not with indomethacin, were used to investigate the effects of propofol on isolated arteries. Propofol exhibited a bifunctional effect on isolated human pulmonary arteries contracted by U46619, evoking constriction at low concentrations (10–100 µM) followed by secondary relaxation (at 100–300 µM). The extent of constriction induced by propofol was higher in an endothelium-denuded group than in an endothelium-intact group. Preincubation with indomethacin abolished constriction and potentiated relaxation. The maximal relaxation was greater in the endothelium-intact than the endothelium-denuded group. Propofol also suppressed CaCl₂-induced constriction in the 60 mM K⁺-containing Ca²⁺-free solution in a dose-dependent manner. Fluorescent imaging of Ca²⁺ using fluo-4 showed that a 10 min incubation with propofol (10–300 µM) inhibited the Ca²⁺ influx into human pulmonary arterial smooth muscle cells induced by a 60 mM K⁺-containing Ca²⁺-free solution. In conclusion, propofol-induced arterial constriction appears to involve prostaglandin production by cyclooxygenase in pulmonary artery smooth muscle cells and the relaxation depends in part on endothelial function, principally on the inhibition of calcium influx through L-type voltage-operated calcium channels.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Arteries
;
Calcium
;
Calcium Channels
;
Constriction
;
Endothelium
;
Humans*
;
Indomethacin
;
Myocytes, Smooth Muscle
;
Propofol*
;
Prostaglandin-Endoperoxide Synthases
;
Pulmonary Artery*
;
Relaxation
;
Vasoconstriction*
;
Vasodilation
4.Influence of Thromboxane A₂ on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes.
In Seok JEONG ; Hwa Jin CHO ; Jeong Gwan CHO ; Sang Hyung KIM ; Kook Joo NA ; Jong Keun KIM
Korean Circulation Journal 2016;46(4):562-568
BACKGROUND AND OBJECTIVES: Adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels play an important role in myocardial protection. We examined the effects of thromboxane A₂ on the regulation of K(ATP) channel activity in single ventricular myocytes. SUBJECTS AND METHODS: Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at -60 mV holding potential during the perfusion of an ATP-free K-5 solution. RESULTS: In the excised inside-out patches, the thromboxane A₂ analog, U46619, decreased the K(ATP) channel activity in a dose-dependent manner; however, the thromboxane A₂ receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced K(ATP) channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced K(ATP) channel activity. CONCLUSION: Thromboxane A₂ may inhibit K(ATP) channel activity, and may have a harmful effect on ischemic myocardium.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Adenosine Triphosphate
;
Adenosine*
;
Adult
;
Animals
;
Digestion
;
Heart
;
Humans
;
KATP Channels
;
Mice*
;
Muscle Cells*
;
Myocardium
;
Perfusion
;
Potassium Channels*
;
Potassium*
5.Influence of Thromboxane A₂ on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes.
In Seok JEONG ; Hwa Jin CHO ; Jeong Gwan CHO ; Sang Hyung KIM ; Kook Joo NA ; Jong Keun KIM
Korean Circulation Journal 2016;46(4):562-568
BACKGROUND AND OBJECTIVES: Adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels play an important role in myocardial protection. We examined the effects of thromboxane A₂ on the regulation of K(ATP) channel activity in single ventricular myocytes. SUBJECTS AND METHODS: Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at -60 mV holding potential during the perfusion of an ATP-free K-5 solution. RESULTS: In the excised inside-out patches, the thromboxane A₂ analog, U46619, decreased the K(ATP) channel activity in a dose-dependent manner; however, the thromboxane A₂ receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced K(ATP) channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced K(ATP) channel activity. CONCLUSION: Thromboxane A₂ may inhibit K(ATP) channel activity, and may have a harmful effect on ischemic myocardium.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Adenosine Triphosphate
;
Adenosine*
;
Adult
;
Animals
;
Digestion
;
Heart
;
Humans
;
KATP Channels
;
Mice*
;
Muscle Cells*
;
Myocardium
;
Perfusion
;
Potassium Channels*
;
Potassium*
6.Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.
Minh Cong NGUYEN ; Jong Taek PARK ; Yeong Gwan JEON ; Byeong Hwa JEON ; Kwang Lae HOE ; Young Myeong KIM ; Hyun Kyo LIM ; Sungwoo RYOO
Yonsei Medical Journal 2016;57(6):1329-1338
PURPOSE: Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. RESULTS: SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. CONCLUSION: These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Acetylcholine
;
Arginase*
;
Arginine
;
Blotting, Western
;
Endothelium
;
Human Umbilical Vein Endothelial Cells
;
NG-Nitroarginine Methyl Ester
;
Nitric Oxide
;
Nitric Oxide Synthase Type III*
;
Oxidation-Reduction
;
Peroxynitrous Acid
;
Phosphorylation*
;
Reactive Oxygen Species
7.Effect of resveratrol on constrictions of human intrapulmonary arteries ex vivo.
Zhao-Jun WANG ; Chun-Yu DENG ; Su-Juan KUANG ; Li-Dan NONG ; Guang-Yan ZHANG ; Jue MA ; Jian-Xiu CUI
Journal of Southern Medical University 2015;35(4):540-543
OBJECTIVETo determine the effect of resveratrol on constrictions of isolated human intrapulmonary arteries and its mechanisms.
METHODSIntrapulmonary arteries (1-1.5 mm in diameter) were dissected and cut into rings (1.8-2.0 mm in length) under microscope, and were then mounted in a Multi Myograph system. The rings were stimulated with 100 nmol/L U46619, 30 nmol/L endothelin-1, or 60 mmol/L KCl to produce sustained contraction of the intrapulmonary arteries, after which resveratrol was applied cumulatively. Endothelium denudation, L-NAME and indomethecin were used to investigate the effect of resveratrol on constrictions of the isolated arteries, suing DMSO as the control.
RESULTSResveratrol induced concentration-dependent relaxations in endothelium-intact rings that contracted in response to stimulations with U46619, ET-1 and KCl, with pD2 of 3.82±0.20, 3.84±0.57, and 3.68±0.27, Emax of (99.58±0.83)%, 100%, and (99.65±0.98)%, respectively. Treatment of the arterial rings with the eNOS inhibitor L-NAME, but not with indomethecin or endothelium denudation, obviously affected the relaxant effects of resveratrol.
CONCLUSIONResveratrol can concentration-dependently produce relaxant effect on human intrapulmonary arteries independent of the endothelium possibly by promoting synthesis and release of NO.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid ; pharmacology ; Humans ; In Vitro Techniques ; Pulmonary Artery ; drug effects ; Stilbenes ; pharmacology ; Vasoconstriction ; drug effects
8.The relaxing effect of Poncirus fructus and its flavonoid content on porcine coronary artery.
Dong Jun YU ; Jin Hong JUN ; Tae Jun KIM ; Dong Kyun SUH ; Dong Ho YOUN ; Tae Wan KIM
Laboratory Animal Research 2015;31(1):33-39
Coronary artery disease is a common occurrence in human, and causes enormous social cost. Poncirus fructus (PF), the dried immature fruits of Poncirus trifoliata Rafinesquem, is used in the treatment of womb contraction and dyspepsia, as a prokinetic, and in improving blood circulation. This study was performed to investigate the effects of PF and some of its flavonoids components on the coronary from the pig. The arterial ring was suspended by a pair of stainless steel stirrups in an organ bath. The end of the upper stirrup was connected to an isometric force transducer. A dose-dependent induction of relaxation was observed by both water and 70% ethanol extracts of PF in the porcine coronary artery precontracted with U46619 (100 nM), a stable analogue of the potent vasoconstrictor thromboxane A2. The 70% ethanol extract showed more efficacy than the water extract. Pretreatment of the artery with L-NAME (100 microM), a nitric oxide synthase inhibitor, resulted in a significant reduction in the relaxation induced by PF extract. In addition, ODQ (10 microM), a soluble guanylate cyclase inhibitor, also significantly reduced the effects of PF extracts. Hesperidin, a flavonoid present in PF, induced very weak relaxation of the porcine coronary artery at a high concentration (100 microM), while its aglycone, hesperetin, demonstrated a dose-dependent relaxation. In conclusion, PF extracts induced relaxation in the porcine coronary artery, partially through the nitric oxide-cGMP pathway, and the aglycones of flavonoids might be also involved in the relaxation of the same artery.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Arteries
;
Baths
;
Blood Circulation
;
Coronary Artery Disease
;
Coronary Vessels*
;
Dyspepsia
;
Ethanol
;
Flavonoids
;
Fruit
;
Guanylate Cyclase
;
Hesperidin
;
Humans
;
NG-Nitroarginine Methyl Ester
;
Nitric Oxide Synthase
;
Poncirus*
;
Relaxation
;
Stainless Steel
;
Thromboxane A2
;
Transducers
;
Water
9.Development of an Ex Vivo Model for the Study of Cerebrovascular Function Utilizing Isolated Mouse Olfactory Artery.
Hyung Jin LEE ; Hans H DIETRICH ; Byung Hee HAN ; Gregory J ZIPFEL
Journal of Korean Neurosurgical Society 2015;57(1):1-5
OBJECTIVE: Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. METHODS: The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately -500 microm in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). RESULTS: We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin PGH2. Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. CONCLUSION: Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models.
Animals
;
Arteries*
;
Arterioles
;
Bradykinin
;
Brain
;
Cerebral Arteries
;
Cerebrovascular Disorders
;
Cholinergic Agents
;
Connective Tissue
;
Endothelin-1
;
Mice*
;
Phenylephrine
;
Prostaglandin H2
;
Rats
;
Vasoconstriction
;
Vasoconstrictor Agents
;
Vasodilation
10.In silico target fishing for the potential bioactive components contained in Huanglian Jiedu Tang (HLJDD) and elucidating molecular mechanisms for the treatment of sepsis.
Shi-Tang MA ; Cheng-Tao FENG ; Guo-Liang DAI ; Yue SONG ; Guo-Liang ZHOU ; Xiao-Lin ZHANG ; Cheng-Gui MIAO ; Hao YU ; Wen-Zheng JU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):30-40
The present study was designed to target fish for potential bioactive components contained in a Huang Lian Jie Du decoction (HLJDD) and identify the underlying mechanisms of action for the treatment of sepsis at the molecular level. he bioactive components database of HLJDD was constructed and the sepsis-associated targets were comprehensively investigated. The 3D structures of the PAFR and TXA2R proteins were established using the homology modelling (HM) method, and the molecular effects for sepsis treatment were analysed by comparing the bioactive components database and the sepsis targets using computational biology methods. The results of the screening were validated with biological testing against the human oral epidermal carcinoma cell line KB in vitro. We found that multiple bioactive compounds contained in the HLJDD interacted with multiple targets. We also predicted the promising compound leads for sepsis treatment, and the first 28 compounds were characterized. Several compounds, such as berberine, berberrubine and epiberberine, dose-dependently inhibited PGE2 production in human KB cells, and the effects were similar in the presence or absence of TPA. This study demonstrates a novel approach to identifying natural chemical compounds as new leads for the treatment of sepsis.
Anti-Inflammatory Agents, Non-Steroidal
;
pharmacokinetics
;
Berberine
;
analogs & derivatives
;
pharmacokinetics
;
Dinoprostone
;
biosynthesis
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacokinetics
;
Humans
;
KB Cells
;
Platelet Membrane Glycoproteins
;
drug effects
;
Protein Transport
;
Receptors, G-Protein-Coupled
;
drug effects
;
Receptors, Thromboxane A2, Prostaglandin H2
;
drug effects
;
Sepsis
;
drug therapy
;
metabolism
;
Tetradecanoylphorbol Acetate
;
pharmacokinetics

Result Analysis
Print
Save
E-mail