1.Small-molecule anti-COVID-19 drugs and a focus on China's homegrown mindeudesivir (VV116).
Qiuyu CAO ; Yi DING ; Yu XU ; Mian LI ; Ruizhi ZHENG ; Zhujun CAO ; Weiqing WANG ; Yufang BI ; Guang NING ; Yiping XU ; Ren ZHAO
Frontiers of Medicine 2023;17(6):1068-1079
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir-ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir-ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir-ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China's homegrown anti-COVID-19 drugs.
Humans
;
Ritonavir/therapeutic use*
;
COVID-19
;
Antiviral Agents/therapeutic use*
;
China
;
Nitriles
;
Lactams
;
Proline
;
Adenosine/analogs & derivatives*
;
Leucine
2.Effects of stachyine on apoptosis in an Aβ-induced PC12 cell model of Alzheimer's disease.
Liangchao QU ; Jiajia HUANG ; Mingda FAN ; Yuchen HAO ; Jinxiu YAN
Journal of Zhejiang University. Medical sciences 2020;40(7):1023-1028
OBJECTIVE:
To investigate the effects of stachydrine (STA) on apoptosis of Aβ-induced PC12 cells mimicking Alzheimer's disease and explore the mechanisms.
METHODS:
The differential genes of STA were analyzed based on GSE85871 data, and the target genes of STA were identified using STITCH database. PC12 cells were treated with Aβ to establish a cell model of Alzheimer's disease, and the changes in cell viability and cell cycle in response to STA treatment were assessed using MTT assay and flow cytometry, respectively. RT-PCR and Western blotting were used to detect the relevant gene or protein expressions in the treated cells.
RESULTS:
GSE85871 data showed 37 up-regulated genes and 48 down-regulated genes in cells following treatment with STA. Analysis of the data from the STITCH database indicated that RPS8 and EED were the target genes of STA. Treatment of PC12 cells with Aβ significantly lowered the cell viability ( < 0.05) and the expressions of RPS8 and EED at both the mRNA and protein levels ( < 0.05), and obviously inhibited the expression of apoptosis-related proteins Bcl-2 and p53 ( < 0.05). STA treatment of the cells significantly reversed the effect of Aβ and induced cell cycle arrest in G2/M phase, causing also significantly increases in the expression levels of RPS8, EED, Bcl-2 and p53 ( < 0.05).
CONCLUSIONS
STA plays an important role in inhibiting the apoptosis of PC12 cells induced by Aβ possibly by regulating RPS8 and EED expression to promote the expressions of Bcl-2 and p53.
Alzheimer Disease
;
Animals
;
Apoptosis
;
drug effects
;
Cell Survival
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Models, Biological
;
PC12 Cells
;
Proline
;
analogs & derivatives
;
pharmacology
;
Rats
3.Involvement of NF-κB and the CX3CR1 Signaling Network in Mechanical Allodynia Induced by Tetanic Sciatic Stimulation.
Zhe-Chen WANG ; Li-Hong LI ; Chao BIAN ; Liu YANG ; Ning LV ; Yu-Qiu ZHANG
Neuroscience Bulletin 2018;34(1):64-73
Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1-CX3CR1 signaling is an important pathway in neuronal-microglial activation. Nuclear factor κB (NF-κB) is a key signal transduction molecule that regulates neuroinflammation and neuropathic pain. Here, we set out to determine whether and how NF-κB and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-κB (pNF-κB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-κB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB down-regulated the expression of CX3CL1-CX3CR1 signaling, and conversely the CX3CR1-neutralizing antibody also down-regulated pNF-κB. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR1-neutralizing antibodies in treating pathological pain.
Animals
;
Antibodies
;
therapeutic use
;
Antioxidants
;
therapeutic use
;
CX3C Chemokine Receptor 1
;
immunology
;
metabolism
;
Cytokines
;
metabolism
;
Disease Models, Animal
;
Enzyme Inhibitors
;
therapeutic use
;
Ganglia, Spinal
;
drug effects
;
metabolism
;
Hyperalgesia
;
etiology
;
metabolism
;
Nerve Tissue Proteins
;
metabolism
;
Pain Threshold
;
physiology
;
Physical Stimulation
;
adverse effects
;
Proline
;
analogs & derivatives
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
physiology
;
Signal Transduction
;
physiology
;
Spinal Cord
;
drug effects
;
metabolism
;
Thiocarbamates
;
therapeutic use
;
Up-Regulation
;
drug effects
;
physiology
4.Design, synthesis and evaluation of new L-proline derivatives as acetylcholinesterase inhibitors.
Yun-feng TIAN ; Jun-tao CHEN ; Jun-jie LI ; Ying-chao ZHANG ; Ting-ting CAO ; Zheng-yue MA
Acta Pharmaceutica Sinica 2015;50(6):719-724
In this paper, fourteen new L-proline derivatives were designed and synthesized, and their acetlcholinesterase (AChE) inhibitory activities were also investigated in vitro. New L-proline derivatives were prepared from substituted 2-bromo-1-acetophenones through four-step reaction; and their bioactivities as AChE inhibitors were measured by Ellman spectrophotometry. The results showed that the target compounds had a certain AChE inhibitory activity to in vitro. The bioactivity of compound 8b was the best of them, and its IC50 value was 5.45 µmol.L-1, which was better than that of rivastigmine. So the acetylcholinesterase inhibitory activities of new L-proline derivatives were worth to be further studied.
Acetylcholinesterase
;
Cholinesterase Inhibitors
;
chemical synthesis
;
chemistry
;
Drug Design
;
Proline
;
analogs & derivatives
;
Rivastigmine
;
chemistry
;
Structure-Activity Relationship
5.NF-κb inhibitor PDTC enhances tumor necrosis factor α-induced apoptosis of gastric cancer cell SGC-7901.
Ming-zheng CAO ; Wei-zheng MAO ; Gui-liang MA ; Yang LI
Chinese Journal of Gastrointestinal Surgery 2013;16(6):578-582
OBJECTIVETo investigate the effect of PDTC (inhibitor of NF-κb) on apoptosis of human gastric cancer cell line SGC-7901 induced by tumor necrosis factor α (TNF-α) and explore the related mechanisms.
METHODSAfter the treatment with different concentrations of PDTC, TNF-α or PDTC combined with TNF-α on gastric cancer cell line SGC-7901, the growth inhibition of SGC-7901 was measured by MTT assay. Hoechst was used to assess SGC-7901 cell apoptosis. The protein expressions of survivin and caspase-3 were detected by Western blot assay.
RESULTSThe growth inhibition rate of SGC-7901 induced by PDTC (15, 30, 60, 100 μmol/L) was (12.14±0.91)%, (20.00±1.11)%, (37.63±1.01)% and (41.46±1.07)%. Different concentrations of PDTC all inhibited the growth of SGC-7901 significantly (all P<0.01), The growth inhibition rate of SGC-7901 induced by 25 mg/L TNF-α was (2.38±0.67)%, which could not significantly inhibit the growth of SGC-7901 [control (1.50±0.81)%], while TNF-α of 50, 100, 150 mg/L could inhibit the growth of SGC-7901 significantly [(4.53±0.85)%, (4.43±0.70)% and (4.74±1.07)%, all P<0.05]. PDTC (15 μmol/L) combined with TNF-α (25, 50, 100, 150 mg/L) significantly increased the cell growth inhibition rate compared with TNF-α alone or PDTC 15 μmol/L alone (all P<0.01). Hoechst assay showed that 100 mg/L TNF-α, 15 μmol/L PDTC and combination of above two all induced cell apoptosis (P<0.01), and the combination group had significantly higher percentage of cell apoptosis (P<0.01). Survivin protein was significantly down-regulated in combination group as compared with single TNF-α (100 mg/L) group, but was not significant down-regulated as compared with single PDTC (15 μmol/L) group. Caspase-3 protein expression was significantly increased in combination group as compared with other two groups.
CONCLUSIONPDTC can enhance the cell apoptosis induced by TNF-α, which may be associated with the blocking of TNF-α-activated NF-κB signaling pathway by PDTC, the down-regulation of survivin expression, and up-regulation of caspase-3 expression.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Gene Expression Regulation, Neoplastic ; Humans ; Inhibitor of Apoptosis Proteins ; metabolism ; NF-kappa B ; antagonists & inhibitors ; Proline ; analogs & derivatives ; pharmacology ; Signal Transduction ; Stomach Neoplasms ; metabolism ; pathology ; Thiocarbamates ; pharmacology ; Tumor Necrosis Factor-alpha ; pharmacology
6.Divergent immunomodulatory effects of extracts and phenolic compounds from the fern Osmunda japonica Thunb.
Xiao-xin ZHU ; Yu-jie LI ; Lan YANG ; Dong ZHANG ; Ying CHEN ; Eva KMONICKOVA ; Xiao-gang WENG ; Qing YANG ; Zdeněk ZÍDEK
Chinese journal of integrative medicine 2013;19(10):761-770
OBJECTIVETo study possible immunobiological potential of Osmunda japonica Thunb.
METHODSImmunomodulatory effects of ethanol extracts prepared from rhizomes of O. japonica and phenolic compounds isolated from the extracts were investigated under the in vitro conditions using the rat peritoneal cells (2×10(6)/mL; 24 h culture). Biosynthesis of nitric oxide (NO) was assayed by Griess reagent, production of prostaglandin E2 (PGE2) and secretion of cytokines were determined by enzyme-linked immunoabsorbent assay.
RESULTSThe extracts activated dose dependently, with the onset at 2.5-5 μmol/L concentrations, the high output NO production, and secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Mild enhancement of NO was produced by the aldehyde-type phenolics 4-hydroxybenzaldehyde and 3,4-hydroxybenzaldehyde. In contrasts, the acetone-type phenolics 4-hydroxybenzalacetone and 3,4-hydroxybenzalacetone inhibited production of immune mediators including cytokines (TNF-α, IL-1β, IL-6), NO, and PGE2. The 3,4-hydroxybenzalacetone was more effective than 4-hydroxybenzaldehyde. The IC50s estimates ranged within the interval of 5-10 μmol/L. No signs of cytotoxicity were observed up to the 50 μmol/L concentration of the compounds.
CONCLUSIONPhenolic compounds contained in medicinal herb Osmunda japonica possess distinct immunomodulatory activity.
Animals ; Cell Survival ; drug effects ; Cells, Cultured ; Dinoprostone ; biosynthesis ; Female ; Ferns ; chemistry ; Immunologic Factors ; pharmacology ; Interferon-gamma ; pharmacology ; Lipopolysaccharides ; pharmacology ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Peritoneum ; cytology ; drug effects ; Phenols ; chemistry ; isolation & purification ; pharmacology ; Plant Extracts ; chemistry ; isolation & purification ; pharmacology ; Polymyxin B ; pharmacology ; Proline ; analogs & derivatives ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Wistar ; Thiocarbamates ; pharmacology
7.Monitoring of chemical components with different color traits of Tussilago farfara using NMR-based metabolomics.
Xi MI ; Zhen-yu LI ; Xue-mei QIN ; Li-zeng ZHANG
Acta Pharmaceutica Sinica 2013;48(11):1692-1697
The quality and grade of traditional Chinese medicinal herbs were assessed by their characteristics traditionally. According to traditional experience, the quality of the purple Flos Farfarae is better than that of yellow buds. NMR-based metabolomic approach combined with significant analysis of microarray (SAM) and Spearman rank correlation analysis were used to investigate the different metabolites of the Flos Farfarae with different color feature. Principal component analysis (PCA) showed clear distinction between the purple and yellow flower buds of Tussilago farfara. The S-plot of orthogonal PLS-DA (OPLS-DA) and t test revealed that the levels of threonine, proline, phosphatidylcholine, creatinine, 4, 5-dicaffeoylquinic acid, rutin, caffeic acid, kaempferol analogues, and tussilagone were higher in the purple flower buds than that in the yellow buds, in agreement with the results of SAM and Spearman rank correlation analysis. The results confirmed the traditional medication experience that "purple flower bud is better than the yellow ones", and provide a scientific basis for assessing the quality of Flos Farfarae by the color features.
Caffeic Acids
;
analysis
;
Color
;
Creatinine
;
analysis
;
Flowers
;
chemistry
;
Kaempferols
;
analysis
;
Magnetic Resonance Spectroscopy
;
Metabolomics
;
Phosphatidylcholines
;
analysis
;
Plants, Medicinal
;
chemistry
;
Principal Component Analysis
;
Proline
;
analysis
;
Quinic Acid
;
analogs & derivatives
;
analysis
;
Rutin
;
analysis
;
Sesquiterpenes
;
analysis
;
Threonine
;
analysis
;
Tussilago
;
chemistry
8.Intervention of pyrrolidine dithiocarbamate on expressions of connective tissue growth factor, type I collagen, and type III collage in acute paraquat poisoned rats.
Min HUANG ; Hui-fang YANG ; Ping ZHANG ; Xiu-li CHANG ; Zhi-jun ZHOU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(1):4-9
OBJECTIVETo observe the changes in the expression of connective tissue growth factor (CTGF), type I collagen (Col I), and type III collagen (Col III) among the rats with acute paraquat (PQ) poisoning and the intervention effect of pyrrolidine dithiocarbamate (PDTC) on their expression, and to investigate the mechanism of PQ-induced pulmonary fibrosis and the intervention effect of PDTC on the disease.
METHODSSprague-Dawley rats were randomly divided into control group (n = 6), PQ group (n = 36), and PQ + PDTC group (n = 36). The PQ group and PQ + PDTC group were given a single dose of saline-diluted PQ (80 mg/kg) by gavage; 2 h later, the PQ + PDTC group was intraperitoneally injected with a single dose of PDTC (100 mg/kg), and the PQ group was intraperitoneally injected with the same amount of saline. The control group was given saline (1 ml/kg) by gavage and was intraperitoneally injected with the same amount of saline 2h later. At 1, 3, 7, 14, 25, and 56 days after operation, the protein expression of CTGF was evaluated by Western blot; the mRNA expression of CTGF, Col I, and Col III was analyzed by real-time quantitative PCR; the content of hydroxyproline in lung tissue was measured, and the pathological changes of lung tissue of the poisoned rats were observed.
RESULTSThe protein expression of CTGF in the PQ group increased as the time went on, slowly from the 3rd to the 14th day and rapidly from the 28th to the 56th day, significantly higher than that in the control group at each time point (P < 0.05 or P < 0.01). The mRNA expression of CTGF in the PQ group began to rise markedly on the 1st day, increased rapidly from the 3rd to the 14th day, and remained at a relatively high level from the 28th to the 56th day, significantly higher than that in the control group at each time point (P < 0.01). The mRNA expression of Col I in the PQ group changed little on the 1st and 3rd day, increased slightly on the 7th day, and increased greatly from the 14th to the 56th day, significantly higher than that in the control group from the 7th to the 56th day (P < 0.05 or P < 0.01). The mRNA expression of Col III in the PQ group began to rise on the 1st day, reached the peak level on the 7th day, and then declined, significantly higher than that in the control group at each time point (P < 0.05 or P < 0.01). Masson staining showed that fibroblasts proliferated from the 14th to the 28th day, and collagen fibers increased gradually. Compared with the PQ group, the PQ + PDTC group showed significantly decreased protein expression of CTGF as well as mRNA expression of CTGF, Col I, and Col III (P < 0.05 or P < 0.01).
CONCLUSIONIn PQ-induced pulmonary fibrosis, the expression of CTGF keeps rising, and the collagen secretion and matrix synthesis are increased probably by upregulating the transcriptional levels of Col I and Col III; CTGF plays an important role in PQ-induced pulmonary fibrosis. PDTC can inhibit the expression of CTGF, thus reducing the lung injury in rats with PQ poisoning.
Animals ; Collagen Type I ; metabolism ; Collagen Type III ; metabolism ; Connective Tissue Growth Factor ; metabolism ; Male ; Paraquat ; poisoning ; Proline ; analogs & derivatives ; pharmacology ; Pulmonary Fibrosis ; chemically induced ; metabolism ; Rats ; Rats, Sprague-Dawley ; Thiocarbamates ; pharmacology
9.Inhibition of NF-kappaB prevents high glucose-induced proliferation and plasminogen activator inhibitor-1 expression in vascular smooth muscle cells.
In Kyung JEONG ; Da Hee OH ; Seung Joon PARK ; Ja Heon KANG ; Sunshin KIM ; Myung Shik LEE ; Myung Jun KIM ; Yoo Chul HWANG ; Kyu Jeong AHN ; Ho Yeon CHUNG ; Min Kyung CHAE ; Hyung Joon YOO
Experimental & Molecular Medicine 2011;43(12):684-692
Recent epidemiologic studies clearly showed that early intensive glucose control has a legacy effect for preventing diabetic macrovascular complications. However, the cellular and molecular processes by which high glucose leads to macrovascular complications are poorly understood. Vascular smooth muscle cell (VSMC) dysfunction due to high glucose is a characteristic of diabetic vascular complications. Activation of nuclear factor-kappaB (NF-kappaB) may play a key role in the regulation of inflammation and proliferation of VSMCs. We examined whether VSMC proliferation and plasminogen activator inhibitor-1 (PAI-1) expression induced by high glucose were mediated by NF-kappaB activation. Also, we determined whether selective inhibition of NF-kappaB would inhibit proliferation and PAI-1 expression in VSMCs. VSMCs of the aorta of male SD rats were treated with various concentrations of glucose (5.6, 11.1, 16.7, and 22.2 mM) with or without an inhibitor of NF-kappaB or expression of a recombinant adenovirus vector encoding an IkappaB-alpha mutant (Ad-IkappaBalphaM). VSMC proliferation was examined using an MTT assay. PAI-1 expression was assayed by real-time PCR and PAI-1 protein in the media was measured by ELISA. NF-kappaB activation was determined by immunohistochemical staining, NF-kappaB reporter assay, and immunoblotting. We found that glucose stimulated VSMC proliferation and PAI-1 expression in a dose-dependent manner up to 22.2 mM. High glucose (22.2 mM) alone induced an increase in NF-kappaB activity. Treatment with inhibitors of NF-kappaB such as MG132, PDTC or expression of Ad-IkappaB-alphaM in VSMCs prevented VSMC proliferation and PAI-1 expression induced by high glucose. In conclusion, inhibition of NF-kappaB activity prevented high glucose-induced VSMC proliferation and PAI-1 expression.
Animals
;
Aorta/cytology
;
Cardiovascular Diseases/prevention & control
;
Cell Proliferation/*drug effects
;
Cells, Cultured
;
Diabetes Complications/prevention & control
;
Gene Expression Regulation/drug effects
;
Glucose/immunology/*metabolism
;
Leupeptins/pharmacology
;
Male
;
Muscle, Smooth, Vascular/*cytology
;
Myocytes, Smooth Muscle/cytology/*drug effects/immunology/metabolism
;
NF-kappa B/*antagonists & inhibitors/immunology
;
Plasminogen Activator Inhibitor 1/*genetics
;
Proline/analogs & derivatives/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Thiocarbamates/pharmacology
10.Role of NF-κB in factor VIIa-induced proliferation and migration of colon cancer cell line SW620 cells.
Dong-lin GUO ; Hong ZHOU ; Ying WU ; Fang ZHOU ; Xian-mei ZHANG ; Guo-ying XU ; Hai-ping WEN
Chinese Journal of Oncology 2011;33(9):649-653
OBJECTIVETo explore the roles of NF-κB in factor VIIa-induced proliferation and migration of a colon cancer cell line (SW620) in vitro and its possible mechanism.
METHODSThe expression levels of NF-κB (p65), inhibitory protein of NF-κB (IκB-α), caspase-7, interleukin 8 (IL-8) and tissue factor (TF) in SW620 cells treated with factor VIIa, PDTC (an inhibitor of NF-κB) and other factors were measured by Western-blotting and real-time PCR. Proliferation and migration of the cells were analyzed by flow cytometry and Transwell assay, respectively.
RESULTSFactor VIIa down-regulated the IκB-α level in SW620 cells and increased the intranuclear level of NF-κB. Those effects of factor VIIa were blocked by anti-TF or anti-PAR2 antibodies. The effects of factor VIIa on proliferation and migration of SW620 cells, expression of IL-8, TF as well as caspase-7, were interfered by PDTC (the inhibitor of NF-κB).
CONCLUSIONSTF/VIIa complex activates NF-κB pathway via PAR2, thereby up-regulates IL-8 and down-regulates caspase-7 expression in SW620 cells, finally promotes proliferation and migration of colon cancer cells. In addition, TF/VIIa/PAR2/NF-κB pathway also upregulates TF expression, thus to create a positive feedback loop of TF/VIIa/PAR2/NF-κB/TF.
Antineoplastic Agents ; pharmacology ; Caspase 7 ; genetics ; metabolism ; Cell Line, Tumor ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Colonic Neoplasms ; metabolism ; pathology ; Factor VIIa ; pharmacology ; Humans ; I-kappa B Proteins ; metabolism ; Interleukin-8 ; genetics ; metabolism ; NF-KappaB Inhibitor alpha ; Proline ; analogs & derivatives ; pharmacology ; RNA, Messenger ; metabolism ; Receptor, PAR-2 ; metabolism ; Thiocarbamates ; pharmacology ; Thromboplastin ; genetics ; metabolism ; Transcription Factor RelA ; antagonists & inhibitors ; metabolism

Result Analysis
Print
Save
E-mail