1.Blaps rynchopetera combined with cyclophosphamide affects proliferation and apoptosis of lung cancer cells via Wnt/β-catenin signaling pathway.
Jing-Nan YAN ; Ke MA ; Wen-Jie LIU ; Ying LIN ; Xiu-Yu LI ; Dan WU
China Journal of Chinese Materia Medica 2023;48(20):5603-5611
		                        		
		                        			
		                        			This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/β-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and β-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/β-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Wnt Signaling Pathway
		                        			;
		                        		
		                        			Lung Neoplasms/genetics*
		                        			;
		                        		
		                        			beta Catenin/metabolism*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			;
		                        		
		                        			Rats, Inbred Lew
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2/metabolism*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cyclophosphamide
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			
		                        		
		                        	
2.Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway.
Chu-Lan XIAO ; Zhi-Peng ZHONG ; Can LÜ ; Bing-Jie GUO ; Jiao-Jiao CHEN ; Tong ZHAO ; Zi-Fei YIN ; Bai LI
Journal of Integrative Medicine 2023;21(2):184-193
		                        		
		                        			OBJECTIVE:
		                        			Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.
		                        		
		                        			METHODS:
		                        			A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.
		                        		
		                        			RESULTS:
		                        			Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.
		                        		
		                        			CONCLUSION
		                        			Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Carcinoma, Hepatocellular/drug therapy*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen/therapeutic use*
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/genetics*
		                        			;
		                        		
		                        			beta Catenin/therapeutic use*
		                        			;
		                        		
		                        			Liver Neoplasms/drug therapy*
		                        			;
		                        		
		                        			Desmin/therapeutic use*
		                        			;
		                        		
		                        			Ki-67 Antigen
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Hypoxia
		                        			;
		                        		
		                        			RNA, Messenger/therapeutic use*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			
		                        		
		                        	
3.Terpinen-4-ol inhibits proliferation of VSMCs exposed to high glucose via regulating KLF4/NF-κB signaling pathway.
Li HE ; Lin ZHANG ; Ju ZHANG ; Hong JIANG ; Yong-Xiang HE ; Dong-Guo LENG ; Ying-Xin GONG ; Ding YANG ; Yan SONG ; Chuan-Yin XIONG ; Yan-Yan ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2530-2537
		                        		
		                        			
		                        			This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.
		                        		
		                        		
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Interleukin-18/metabolism*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen/genetics*
		                        			;
		                        		
		                        			Cyclin D1/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Glucose/metabolism*
		                        			
		                        		
		                        	
4.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
		                        		
		                        			
		                        			In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Hypertension, Pulmonary/drug therapy*
		                        			;
		                        		
		                        			Monocrotaline/adverse effects*
		                        			;
		                        		
		                        			Panax notoginseng/chemistry*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen/pharmacology*
		                        			;
		                        		
		                        			Pulmonary Arterial Hypertension
		                        			;
		                        		
		                        			Pulmonary Artery/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptor, Notch3/genetics*
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Saline Solution
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Saponins/pharmacology*
		                        			
		                        		
		                        	
5.Forkhead Box M1 Regulates the Proliferation,Invasion,and Drug Resistance of Gastric Cancer Cells via circ_NOTCH1.
Ning GE ; Yuan-Yuan JIANG ; Zhong-Ping PAN ; Jie WAN
Acta Academiae Medicinae Sinicae 2023;45(5):713-720
		                        		
		                        			
		                        			Objective To investigate the impacts of forkhead box M1(FOXM1)on the proliferation,invasion,and drug resistance of gastric cancer cells by regulating the circular RNA circ_NOTCH1.Methods Western blotting and real-time quantitative PCR were performed to determine the expression of FOXM1 protein and circ_NOTCH1,respectively,in the gastric cancer tissue,para-carcinoma tissue,human normal gastric mucosa epithelial cell line GES-1 and gastric cancer cell lines MGC-803,HGC-27,and BGC-823.BGC-823 cells were classified into the following groups:control,short hairpin RNA FOXM1(sh-FOXM1)and negative control(sh-NC),small interfering RNA circ_NOTCH1(si-circ_NOTCH1)and negative control(si-NC),and sh-FOXM1+circ_NOTCH1 overexpression plasmid(sh-FOXM1+pcDNA-circ_NOTCH1)and sh-FOXM1+negative control(sh-FOXM1+pcDNA).CCK-8 assay and clone formation assay were employed to measure the cell proliferation,and Transwell assay to measure cell invasion.After treatment with 1.0 mg/L adriamycin for 48 h,the cell resistance in each group was analyzed.Western blotting was employed to determine the expression levels of FOXM1,proliferating cell nuclear antigen(PCNA),Bax,multi-drug resistance-associated protein 1(MRP1),and multi-drug resistance gene 1(MDR1).RNA pull-down and RNA immunoprecipitation were employed to examine the binding of circ_NOTCH1 to FOXM1 protein.Results Compared with those in the para-carcinoma tissue,the expression levels of FOXM1 protein and circ_NOTCH1 in the gastric cancer tissue were up-regulated(all P<0.001).Compared with GES-1 cells,MGC-803,HGC-27,and BGC-823 cells showed up-regulated expression levels of FOXM1 protein and circ_NOTCH1(all P<0.001).Compared with the control group and sh-NC group,the sh-FOXM1 group with down-regulated expression of FOXM1 protein and circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with the control group and the si-NC group,the si-circ_NOTCH1 group with down-regulated expression of circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with sh-FOXM1 group and sh-FOXM1+pcDNA group,the sh-FOXM1+pcDNA-circ_NOTCH1 group with up-regulated expression of circ_NOTCH1 showed increased optical density value,clone formation rate,cell invasion number,and cell viability,up-regulated expression of PCNA,MRP1,and MDR1,and down-regulated expression of Bax protein(all P<0.001).FOXM1 protein was able to interact with circ_NOTCH1.Conclusion Interference with FOXM1 may inhibit the proliferation,invasion,and drug resistance of gastric cancer cells by silencing circ_NOTCH1 expression.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			;
		                        		
		                        			Carcinoma
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Drug Resistance
		                        			;
		                        		
		                        			Forkhead Box Protein M1/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			MicroRNAs/genetics*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen/metabolism*
		                        			;
		                        		
		                        			Receptor, Notch1/metabolism*
		                        			;
		                        		
		                        			RNA, Small Interfering/genetics*
		                        			;
		                        		
		                        			Stomach Neoplasms/genetics*
		                        			
		                        		
		                        	
6.Rutaecarpine Inhibits Intimal Hyperplasia in A Balloon-Injured Rat Artery Model.
Yang XU ; Xiu-Ping CHEN ; Feng ZHANG ; Hua-Hua HOU ; Jing-Yi ZHANG ; Shu-Xian LIN ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(6):429-435
OBJECTIVETo investigate the effect and potential mechanisms of rutaecarpine (Rut) in a rat artery balloon-injury model.
METHODSThe intimal hyperplasia model was established by rubbing the endothelia with a balloon catheter in the common carotid artery (CCA) of rats. Fifty rats were randomly divided into five groups, ie. sham, model, Rut (25, 50 and 75 mg/kg) with 10 rats of each group. The rats were treated with or without Rut (25, 50, 75 mg/kg) by intragastric administration for 14 consecutive days following injury. The morphological changes of the intima were evaluated by hematoxylin-eosin staining. The expressions of proliferating cell nuclear antigen (PCNA) and smooth muscle (SM) α-actin in the ateries were assayed by immunohistochemical staining. The mRNA expressions of c-myc, extracellular signal-regulated kinase 2 (ERK2), MAPK phosphatase-1 (MKP-1) and endothelial nitric oxide synthase (eNOS) were determined by real-time reverse transcription-polymerase chain reaction. The protein expressions of MKP-1 and phosphorylated ERK2 (p-ERK2) were examined by Western blotting. The plasma contents of nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP) were also determined.
RESULTSCompared with the model group, Rut treatment significantly decreased intimal thickening and ameliorated endothelial injury (P<0.05 or P<0.01). The positive expression rate of PCNA was decreased, while the expression rate of SM α-actin obviously increased in the vascular wall after Rut (50 and 75 mg/kg) administration (P<0.05 or P<0.01). Furthermore, the mRNA expressions of c-myc, ERK2 and PCNA were downregulated while the expressions of eNOS and MKP-1 were upregulated (P<0.05 or P<0.01). The protein expressions of MKP-1 and the phosphorylation of ERK2 were upregulated and downregulated after Rut (50 and 75 mg/kg) administration (P<0.05 or P<0.01), respectively. In addition, Rut dramatically reversed balloon injury-induced decrease of NO and cGMP in the plasma (P<0.05 or P<0.01).
CONCLUSIONRut could inhibit the balloon injury-induced carotid intimal hyperplasia in rats, possibly mediated by promotion of NO production and inhibiting ERK2 signal transduction pathways.
Actins ; metabolism ; Animals ; Carotid Arteries ; drug effects ; metabolism ; pathology ; Carotid Artery Injuries ; drug therapy ; genetics ; pathology ; Cyclic GMP ; blood ; Disease Models, Animal ; Gene Expression Regulation ; drug effects ; Hyperplasia ; Indole Alkaloids ; pharmacology ; therapeutic use ; Male ; Nitric Oxide ; blood ; Phosphorylation ; drug effects ; Proliferating Cell Nuclear Antigen ; metabolism ; Quinazolines ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Tunica Intima ; drug effects ; pathology
7.Knocking down fascin inhibits cervical cancer cell proliferation and tumorigenesis in nude mice.
Xian LI ; Shanshan LI ; Xinxin WANG ; Surong ZHAO ; Hao LIU
Journal of Southern Medical University 2018;38(12):1409-1414
		                        		
		                        			OBJECTIVE:
		                        			To study the effect of knocking down fascin on cervical cancer cell proliferation and tumorigenicity in nude mice.
		                        		
		                        			METHODS:
		                        			Cervical cancer CaSki cells were infected with a lentiviral vector carrying fascin siRNA or with a negative control lentivirus, and fascin mRNA and protein expressions in the cells were detected using qRT-PCR and Western blotting. MTT assay was used to determine the proliferation of CaSki cells with fascin knockdown. CaSki cells transfected with fascin siRNA or the control lentiviral vector and non-transfected CaSki cells were inoculated subcutaneously in nude mice, and the volume and weight of the transplanted tumor were measured; Western blotting was used to detect the expressions of proliferating cell nuclear antigen (PCNA), survivin, cyclin dependent kinase 4 (CDK4) and p21 proteins in the tumor xenograft.
		                        		
		                        			RESULTS:
		                        			Infection with the lentiviral vector carrying fascin siRNA, but not the negative control vector, caused significant reductions in the expression levels of fascin mRNA and protein in CaSki cells ( < 0.05). Fascin knockdown resulted in significantly reduced proliferation of CaSki cells ( < 0.05). The nude mice inoculated with CaSki cells with fascin knockdown showed reduced tumor volume and weight, lowered levels of PCNA, survivin and CDK4, and increased expression of p21 protein in the tumor xenograft compared with the control mice. The negative control lentivirus did not affect the proliferation or tumorigenicity of CaSki cells in nude mice or the expression levels of PCNA, survivin, CDK4 or p21 proteins in the xenografts.
		                        		
		                        			CONCLUSIONS
		                        			Knocking down fascin can inhibit the growth and tumorigenicity of cervical cancer cells in nude mice.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 4
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase Inhibitor p21
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Microfilament Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			Survivin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Tumor Burden
		                        			;
		                        		
		                        			Uterine Cervical Neoplasms
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
8.Effects of acupuncture with different filiform needles on tissues, cells and collagenous fiber of fascia in acupoint area of rats.
Cheng LI ; Bo CHEN ; Tiehan HU ; Lei CHEN
Chinese Acupuncture & Moxibustion 2015;35(8):801-805
OBJECTIVETo explore the effects of acupuncture with different filiform needles on structure of fascial connective tissues, cellular activity, arrangement and content of collagen fibers in acupoint area of rats.
METHODSA total of 32 SD rats were randomly divided into a blank group, a thin needle group, a medium needle group and a thick needle group, 8 rats in each one. Except for the blank group, rats in the remaining groups were treated with horizontal acupuncture at "Zhongwan" (CV 12) towards Conception Vessel with different filiform needles, and twirling mild reinforcing-reducing method was applied, once a day. Rats in the blank group were treated with identical anesthesia, grasping and fixation. After 3-day intervention, the fascial connective tissue of acupoint area was collected. HE staining, immumohistochemical staining of proliferating cell nuclear antigen (PCNA) and MASSON staining were adopted to observe the morphology of fascial connective tissues, expression of PCNA in cells and arrangement and expression of collagenous fiber.
RESULTSAfter acupuncture in each group, the consistency of morphology of fascial connective tissues and arrangement of collagenous fiber were changed; the expression of PCNA protein in the fascial connective tissue in each group was significantly increased (P<0. 01, P<0. 05). The area distribution of collagenous fiber were changed, and that in the thin needle group was insignificantly increased compared with that in the blank group (P>0. 05), and that in the medium needle group and thick needle group were reduced compared with that in the blank group (both P<0. 05).
CONCLUSIONSAcupuncture with different filiform needles can change the local tissue morphology of acupoints, strengthen cell activity and adjust the exyression of collagenous fiber protein, which may be one of the cellular biomechanics principles of the acupuncture therapy's "regulating meridians" effects. However, the stimulation is produced by different fifiform needles, and the complex relationships exist between cells and collagen fibers.
Acupuncture Points ; Acupuncture Therapy ; instrumentation ; methods ; Animals ; Cell Proliferation ; Collagen ; genetics ; metabolism ; Connective Tissue ; anatomy & histology ; metabolism ; Fascia ; anatomy & histology ; cytology ; metabolism ; Male ; Meridians ; Needles ; Proliferating Cell Nuclear Antigen ; metabolism ; Rats ; Rats, Sprague-Dawley
9.Inhibitory effects of 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside on angiotensin II-induced proliferation of vascular smooth muscle cells.
Xiao-le XU ; Yan-juan HUANG ; Dan-yan LING ; Wei ZHANG
Chinese journal of integrative medicine 2015;21(3):204-210
OBJECTIVETo investigate the effect of 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the root of Polygonum multiflorum, on angiotensin II (Ang II)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and to identify the potential mechanism.
METHODSCell proliferation and cell cycle were determined by cell counting, 5-bromo-2'-deoxyuridine incorporation assay, proliferating cell nuclear antigen protein expression and flow cytometry. Levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), mitogenic extracellular kinase 1/2 (MEK1/2) and Src in VSMCs were measured by Western blot. The expression of c-fos, c-jun and c-myc mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR). Intracellular reactive oxygen species (ROS) was measured by fluorescence assay.
RESULTSTSG significantly inhibited Ang II-induced VSMCs proliferation and arrested cells in the G /S checkpoint (P<0.05 or P<0.01). TSG decreased the levels of phosphorylated ERK1/2, MEK1/2 and Src in VSMCs (P<0.05 or P<0.01). TSG also suppressed c-fos, c-jun and c-myc mRNA expression <0.05 or P<0.01). In addition, the intracellular ROS was reduced by TSG (P<0.01).
CONCLUSIONSTSG inhibited Ang II-induced VSMCs proliferation. Its antiproliferative effect might be associated with down-regulation of intracellular ROS, followed by the suppression of the Src-MEK1/2-ERK1/2 signal pathway, and hence, blocking cell cycle progression.
Angiotensin II ; pharmacology ; Animals ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Glucosides ; pharmacology ; Intracellular Space ; metabolism ; Male ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Phosphorylation ; drug effects ; Proliferating Cell Nuclear Antigen ; metabolism ; Proto-Oncogene Proteins ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Stilbenes ; pharmacology ; Superoxide Dismutase ; metabolism
10.Effects of moxibustion on cell proliferative factors in gastric mucosa in rats with precancerous lesions of chronic atrophic gastritis.
Zongbao YANG ; Chenguang WANG ; Jiaolong CHEN ; Hong WANG ; Yadong WANG ; Fuqiang MA
Chinese Acupuncture & Moxibustion 2015;35(12):1269-1273
OBJECTIVETo explore the molecular mechanism of moxibustion at stomach meridian acupoints for precancerous lesions of chronic atrophic gastritis (CAG).
METHODSFifty male SD rats were randomly divided into a normal group, a model group, a stomach meridian group, a control point group and a vitacoenzyme group, 10 rats in each group. The CAG precancerous lesion model was made in all the groups except the normal group. The rats in the normal group and model group were bundled for 30 min per day; the rats in the stomach meridian group and control point group were bundled and treated with moxibustion at stomach meridian acupoints or control points for 30 min per day; the rats in the vitacoenzyme group were treated with intragastric administration of vitacoenzyme, once per day. All the treatment was given for 20 weeks. The pathological morphological change of gastric mucosa was observed under optical microscope; the expression of epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), vascular endothelial growth factor (VEGF), gastric mucosal proliferatig cell nuclear antigen (PCNA), argyrophilic protein of nucleolar organizer regions (Ag-NORs) in gastric mucosal cells were detected by enzyme linked immuno sorbent assay (ELISA).
RESULTSCompared with the normal group, in the model group the gastric mucosal cells showed dysplasia and the expression of EGF, TGF-alpha, PCNA, VEGF, Ag-NORs in gastric mucosa cells in the model group was increased significantly (all P < 0.05). Compared with the model group, the gastric mucosa lesion gradually recovered and the expression of EGF, TGF-alpha, PCNA, VEGF, Ag-NORs in gastric mucosal cells was gradually decreased in the stomach meridian group, control point group and vitacoenzyme group, in which the stomach meridian group had the most significant effects (all P < 0.05).
CONCLUSIONMoxibustion at stomach meridian acupoints can obviously decrease the expression of cell proliferative factors in gastric mucosa in rats with CAG precancerous lesions, inhibit the gastric mucosal cell dysplasia, and promote the recovery of gastric mucosa.
Acupuncture Points ; Animals ; Cell Proliferation ; Epidermal Growth Factor ; genetics ; metabolism ; Gastric Mucosa ; cytology ; Gastritis, Atrophic ; genetics ; metabolism ; physiopathology ; therapy ; Humans ; Hyperplasia ; genetics ; metabolism ; physiopathology ; therapy ; Male ; Moxibustion ; Proliferating Cell Nuclear Antigen ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
            
Result Analysis
Print
Save
E-mail