1.Vesicular Glutamate Transporter 1 (VGLUT1)- and VGLUT2-containing Terminals on the Rat Jaw-closing γ-Motoneurons
Sook Kyung PARK ; Jae Hyun HONG ; Jae Kwang JUNG ; Hyoung Gon KO ; Yong Chul BAE
Experimental Neurobiology 2019;28(4):451-457
Currently, compared to jaw-closing (JC) α-motoneurons, the information on the distribution and morphology of glutamatergic synapses on the jaw-closing (JC) γ-motoneurons, which may help elucidate the mechanism of isometric contraction of the JC muscle, is very limited. This study investigated the distribution and ultrastructural features of vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive (+) axon terminals (boutons) on JC γ-motoneurons by retrograde tracing with horseradish peroxidase, electron microscopic immunocytochemistry, and quantitative analysis. About 35% of the boutons on identified JC γ-motoneurons were VGLUT+, and of those, 99% were VGLUT2+. The fraction of VGLUT1+ boutons of all boutons and the percentage of membrane of JC γ-motoneurons covered by these boutons were significantly lower than those for the JC α-motoneurons, revealed in our previous work. The bouton volume, mitochondrial volume, and active zone area of the VGLUT2+ boutons on the JC γ-motoneurons were uniformly small. These findings suggest that the JC γ-motoneurons, in contrast to the JC α-motoneurons, receive generally weak glutamatergic synaptic input almost exclusively from VGLUT2+ premotoneurons that form direct synapse with motoneurons.
Animals
;
Horseradish Peroxidase
;
Immunohistochemistry
;
Isometric Contraction
;
Membranes
;
Microscopy, Electron
;
Mitochondrial Size
;
Motor Neurons
;
Presynaptic Terminals
;
Rats
;
Synapses
;
Vesicular Glutamate Transport Protein 1
2.Presynaptic Dysfunction by Familial Factors in Parkinson Disease.
Wongyoung LEE ; Soulmee KOH ; Soondo HWANG ; Sung Hyun KIM
International Neurourology Journal 2018;22(Suppl 3):S115-S121
Parkinson disease (PD) is the second most prevalent neurodegenerative disorder after Alzheimer disease. The loss of specific brain area, the substantia nigra pars compacta is known as a major etiology, however it is not fully understood how this neurodegeneration is initiated and what precisely causes this disease. As one aspect of pathophysiology for PD, synaptic dysfunction (synaptopathy) is thought to be an earlier appearance for neurodegeneration. In addition, some of the familial factors cumulatively exhibit that these factors such as α-synuclein, leucine-rich repeat kinase 2, parkin, PTEN-induced kinase 1, and DJ-1 are involved in the regulation of synaptic function and missense mutants of familial factors found in PD-patient show dysregulation of synaptic functions. In this review, we have discussed the physiological function of these genetic factors in presynaptic terminal and how dysregulation of presynaptic function by genetic factors might be related to the pathogenesis of Parkinson disease.
Alzheimer Disease
;
Brain
;
Neurodegenerative Diseases
;
Parkinson Disease*
;
Pars Compacta
;
Phosphotransferases
;
Presynaptic Terminals
;
Synapses
;
Synaptic Transmission
;
Synaptic Vesicles
3.Expression of µ-Opioid Receptor in CA1 Hippocampal Astrocytes.
Min Ho NAM ; Kyung Seok HAN ; Jaekwang LEE ; Jin Young BAE ; Heeyoung AN ; Seahyung PARK ; Soo Jin OH ; Eunju KIM ; Eunmi HWANG ; Yong Chul BAE ; C Justin LEE
Experimental Neurobiology 2018;27(2):120-128
µ-opioid receptor (MOR) is a class of opioid receptors with a high affinity for enkephalins and beta-endorphin. In hippocampus, activation of MOR is known to enhance the neuronal excitability of pyramidal neurons, which has been mainly attributed to a disinhibition of pyramidal neurons via activating Gαi subunit to suppress the presynaptic release of GABA in hippocampal interneurons. In contrast, the potential role of MOR in hippocampal astrocytes, the most abundant cell type in the brain, has remained unexplored. Here, we determine the cellular and subcellular distribution of MOR in different cell types of the hippocampus by utilizing MOR-mCherry mice and two different antibodies against MOR. Consistent with previous findings, we demonstrate that MOR expression in the CA1 pyramidal layer is co-localized with axon terminals from GABAergic inhibitory neurons but not with soma of pyramidal neurons. More importantly, we demonstrate that MOR is highly expressed in CA1 hippocampal astrocytes. The ultrastructural analysis further demonstrates that the astrocytic MOR is localized in soma and processes, but not in microdomains near synapses. Lastly, we demonstrate that astrocytes in ventral tegmental area and nucleus accumbens also express MOR. Our results provide the unprecedented evidence for the presence of MOR in astrocytes, implicating potential roles of astrocytic MOR in addictive behaviors.
Animals
;
Antibodies
;
Astrocytes*
;
Behavior, Addictive
;
beta-Endorphin
;
Brain
;
Carisoprodol
;
Enkephalins
;
gamma-Aminobutyric Acid
;
Hippocampus
;
Interneurons
;
Mice
;
Microscopy, Electron
;
Neurons
;
Nucleus Accumbens
;
Presynaptic Terminals
;
Pyramidal Cells
;
Receptors, Opioid
;
Synapses
;
Ventral Tegmental Area
4.The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation.
So Young PARK ; So Young JANG ; Yoon Kyoung SHIN ; Dong Keun JUNG ; Byeol A YOON ; Jong Kook KIM ; Young Rae JO ; Hye Jeong LEE ; Hwan Tae PARK
Experimental Neurobiology 2017;26(3):141-150
The vertebrate neuromuscular junction (NMJ) is considered as a “tripartite synapse” consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system.
Animals
;
Mice
;
Mice, Knockout
;
Motor Endplate
;
Muscle, Skeletal*
;
Muscles
;
Myelin Sheath
;
Neuregulin-1
;
Neuromuscular Junction
;
Peripheral Nerves
;
Presynaptic Terminals
;
Protein-Tyrosine Kinases
;
Schwann Cells*
;
Synapses*
;
Vertebrates
5.Immunohistochemical Localization of Translationally Controlled Tumor Protein in Axon Terminals of Mouse Hippocampal Neurons.
Seong Yeon BAE ; Vadim SHEVERDIN ; Jeehye MAENG ; In Kyoon LYOO ; Pyung Lim HAN ; Kyunglim LEE
Experimental Neurobiology 2017;26(2):82-89
Translationally controlled tumor protein (TCTP) is a cytosolic protein with microtubule stabilization and calcium-binding activities. TCTP is expressed in most organs including the nervous system. However, detailed distribution and functional significance of TCTP in the brain remain unexplored. In this study, we investigated the global and subcellular distributions of TCTP in the mouse brain. Immunohistochemical analyses with anti-TCTP revealed that TCTP was widely distributed in almost all regions of the brain including the cerebral cortex, thalamus, hypothalamus, hippocampus, and amygdala, wherein it was localized in axon tracts and axon terminals. In the hippocampus, TCTP was prominently localized to axon terminals of the perforant path in the dentate gyrus, the mossy fibers in the cornu ammonis (CA)3 region, and the Schaffer collaterals in the CA1 field, but not in cell bodies of granule cells and pyramidal neurons, and in their dendritic processes. Widespread distribution of TCTP in axon tracts and axon terminals throughout the brain suggests that TCTP is likely involved in neurotransmitter release and/or maintaining synaptic structures in the brain, and that it might have a role in maintaining synaptic functions and synaptic configurations important for normal cognitive, stress and emotional functions.
Amygdala
;
Animals
;
Axons*
;
Brain
;
Cell Body
;
Cerebral Cortex
;
Cognition
;
Cytosol
;
Dentate Gyrus
;
Hippocampus
;
Hypothalamus
;
Immunohistochemistry
;
Mice*
;
Microtubules
;
Nervous System
;
Neurons*
;
Neurotransmitter Agents
;
Perforant Pathway
;
Presynaptic Terminals*
;
Pyramidal Cells
;
Thalamus
6.Noise-Induced Neural Degeneration and Therapeutic Effect of Antioxidant Drugs.
Seong Hee CHOI ; Chul Hee CHOI
Journal of Audiology & Otology 2015;19(3):111-119
The primary site of lesion induced by noise exposure is the hair cells in the organ of Corti and the primary neural degeneration occurs in synaptic terminals of cochlear nerve fibers and spiral ganglion cells. The cellular basis of noise-induced hearing loss is oxidative stress, which refers to a severe disruption in the balance between the production of free radicals and antioxidant defense system in the cochlea by excessive production of free radicals induced by noise exposure. Oxidative stress has been identified by a variety of biomarkers to label free radical activity which include four-hydroxy-2-nonenal, nitrotyrosine, and malondialdehyde, and inducible nitric oxide synthase, cytochrome-C, and cascade-3, 8, 9. Furthermore, oxidative stress is contributing to the necrotic and apoptotic cell deaths in the cochlea. To counteract the known mechanisms of pathogenesis and oxidative stress induced by noise exposure, a variety of antioxidant drugs including oxygen-based antioxidants such as N-acetyl-L-cystein and acetyl-L-carnitine and nitrone-based antioxidants such as phenyl-N-tert-butylnitrone (PBN), disufenton sodium, 4-hydroxy PBN, and 2, 4-disulfonyl PBN have been used in our laboratory. These antioxidant drugs were effective in preventing or treating noise-induced hearing loss. In combination with other antioxidants, antioxidant drugs showed a strong synergistic effect. Furthermore, successful use of antioxidant drugs depends on the optimal timing of treatment and the duration of treatment, which are highly related to the time window of free radical formation induced by noise exposure.
Acetylcarnitine
;
Antioxidants
;
Biomarkers
;
Cell Death
;
Cochlea
;
Cochlear Nerve
;
Free Radicals
;
Hair
;
Hearing Loss, Noise-Induced
;
Malondialdehyde
;
Nitric Oxide Synthase Type II
;
Noise
;
Organ of Corti
;
Oxidative Stress
;
Presynaptic Terminals
;
Sodium
;
Spiral Ganglion
7.Research progress of synaptic vesicle recycling.
Ye-Fei LI ; Xiao-Xing ZHANG ; Shu-Min DUAN
Acta Physiologica Sinica 2015;67(6):545-560
Neurotransmission begins with neurotransmitter being released from synaptic vesicles. To achieve this function, synaptic vesicles endure the dynamic "release-recycle" process to maintain the function and structure of presynaptic terminal. Synaptic transmission starts with a single action potential that depolarizes axonal bouton, followed by an increase in the cytosolic calcium concentration that triggers the synaptic vesicle membrane fusion with presynaptic membrane to release neurotransmitter; then the vesicle membrane can be endocytosed for reusing afterwards. This process requires delicate regulation, intermediate steps and dynamic balances. Accumulating evidence showed that the release ability and mobility of synapses varies under different stimulations. Synaptic vesicle heterogeneity has been studied at molecular and cellular levels, hopefully leading to the identification of the relationships between structure and function and understanding how vesicle regulation affects synaptic transmission and plasticity. People are beginning to realize that different types of synapses show diverse presynaptic activities. The steady advances of technology studying synaptic vesicle recycling promote people's understanding of this field. In this review, we discuss the following three aspects of the research progresses on synaptic vesicle recycling: 1) presynaptic vesicle pools and recycling; 2) research progresses on the differences of glutamatergic and GABAergic presynaptic vesicle recycling mechanism and 3) comparison of the technologies used in studying presyanptic vesicle recycling and the latest progress in the technology development in this field.
Action Potentials
;
Axons
;
physiology
;
Calcium
;
physiology
;
Endocytosis
;
Humans
;
Presynaptic Terminals
;
physiology
;
Synapses
;
physiology
;
Synaptic Transmission
;
Synaptic Vesicles
;
physiology
8.Changes of Cochlear Nerve Terminals after Temporary Noise-Induced Hearing Loss.
Jin Kyung SEO ; Hyun Woo LIM ; Hong Ju PARK ; Jhang Ho PAK ; Jong Woo CHUNG
Korean Journal of Otolaryngology - Head and Neck Surgery 2013;56(4):206-211
BACKGROUND AND OBJECTIVES: Overexposure to intense sound can cause temporary or permanent hearing loss. Post-exposure recovery of thresholds has been assumed to indicate reversal of damage to the inner ear without persistent consequences for auditory function. However, there was a report that acoustic overexposures causing moderate temporary threshold shift caused acute loss of afferent nerve terminals and delayed degeneration of the cochlear ganglion cells while cochlear sensory cells were intact. The purpose of the study was to evaluate the numerical changes of ribbon synapses and efferents to the outer hair cells in ears with temporary noise-induced threshold shifts. MATERIALS AND METHODS: Four-week old CBA mice with normal Preyer's reflexes were used. Mice were exposed to white noise of 110 dB SPL for one hour. Auditory brainstem response (ABR) and distortion-product otoacoustic emission (DPOAE) were recorded before exposure and at four different post-exposure times, 1, 3, 5, and 7 days after noise exposure. Ribbon synapses and efferents near cochlear nerve terminals were stained and calculated in the control group mice at two post-exposure times, 3 and 5 days after the exposure. RESULTS: In the noise-exposed ears, there was no loss of hair cells, in either inner hair cells or outer hair cells. ABR and DPOAE showed maximum threshold shifts after noise-exposure; they returned to the normal pre-exposure values by at day 5. The number of ribbon synapses tended to decrease at 3 days after noise-exposure, but the number of efferent fibers was not statistically different from those of the control mice. CONCLUSION: Our results suggest that the loss of ribbon synapses could be related with the recovery course of temporary threshold shift, even to the point of full hearing recovery.
Acoustics
;
Animals
;
Cochlear Nerve
;
Ear
;
Ear, Inner
;
European Continental Ancestry Group
;
Evoked Potentials, Auditory, Brain Stem
;
Ganglion Cysts
;
Hair
;
Hair Cells, Auditory
;
Hearing
;
Hearing Loss
;
Hearing Loss, Noise-Induced
;
Humans
;
Mice
;
Mice, Inbred CBA
;
Noise
;
Presynaptic Terminals
;
Reflex
;
Synapses
9.Sensory Axon Regeneration: A Review from an in vivo Imaging Perspective.
Seung Baek HAN ; Hyukmin KIM ; Andrew SKUBA ; Alan TESSLER ; Toby FERGUSON ; Young Jin SON
Experimental Neurobiology 2012;21(3):83-93
Injured primary sensory axons fail to regenerate into the spinal cord, leading to chronic pain and permanent sensory loss. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Why axons stop or turn around at the DREZ has generally been attributed to growth-repellent molecules associated with astrocytes and oligodendrocytes/myelin. The available evidence challenges the contention that these inhibitory molecules are the critical determinant of regeneration failure. Recent imaging studies that directly monitored axons arriving at the DREZ in living animals raise the intriguing possibility that axons stop primarily because they are stabilized by forming presynaptic terminals on non-neuronal cells that are neither astrocytes nor oligodendrocytes. These observations revitalized the idea raised many years ago but virtually forgotten, that axons stop by forming synapses at the DREZ.
Animals
;
Astrocytes
;
Axons
;
Chronic Pain
;
Oligodendroglia
;
Presynaptic Terminals
;
Regeneration
;
Spinal Cord
;
Spinal Nerve Roots
;
Synapses
10.Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures.
Yeon Joo JUNG ; Eun Cheng SUH ; Kyung Eun LEE
The Korean Journal of Physiology and Pharmacology 2012;16(6):423-429
Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.
Brain Ischemia
;
Cell Death
;
Dendrites
;
Endoplasmic Reticulum
;
Ethanol
;
Mitochondria
;
N-Methylaspartate
;
Neurons
;
Organelles
;
Phosphotungstic Acid
;
Post-Synaptic Density
;
Presynaptic Terminals
;
Protein Kinases
;
Proteins
;
Receptors, N-Methyl-D-Aspartate
;
Reperfusion

Result Analysis
Print
Save
E-mail