1.DJ1 Ameliorates AD-like Pathology in the Hippocampus of APP/PS1 Mice.
Yang Yang PENG ; Meng Xin LI ; Wen Jie LI ; Yuan XUE ; Yu Fan MIAO ; Yu Lin WANG ; Xiao Chen FAN ; Lu Lu TANG ; Han Lu SONG ; Qian ZHANG ; Xing LI
Biomedical and Environmental Sciences 2023;36(11):1028-1044
OBJECTIVE:
To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.
METHODS:
Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.
RESULTS:
DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).
CONCLUSION
DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.
Animals
;
Mice
;
Alzheimer Disease/therapy*
;
AMP-Activated Protein Kinases/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Antioxidants/metabolism*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mammals/metabolism*
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
NF-E2-Related Factor 2/metabolism*
;
Presenilin-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
2.Early
Chenping LI ; Xuewen XIAO ; Junling WANG ; Lu SHEN ; Bin JIAO
Journal of Central South University(Medical Sciences) 2021;46(2):189-194
Alzheimer's disease (AD) is the most common senile neurodegenerative disease characterized by progressive cognitive dysfunction, psychological and behavioral abnormalities, and impaired ability of activities of daily living. A family with a total of 3 patients were admitted to the Department of Neurology of Xiangya Hospital, Central South University in 2018. The proband showed memory decline as the presenting symptoms, and subsequently showed psychological and behavioral abnormalities, personality changes, seizures, and motor retardation. Definite diagnosis of early-onset familial AD (EOFAD) with missense mutation of presenilin 2 (PSEN2) (c.715A>G p.M239V) was established by whole exome sequencing (WES) technology. We reported the mutation in Chinese Han population for the first time, which expanded the mutation spectrum ofPSEN2 gene and aid to enrich the characterization of clinical phenotype in EOFAD associated to PSEN2 mutations. Patients with early onset age and complex clinical manifestations of AD can be diagnosed with the help of genetic testing to avoid misdiagnosis.
Activities of Daily Living
;
Alzheimer Disease/genetics*
;
Humans
;
Mutation
;
Neurodegenerative Diseases
;
Presenilin-1/genetics*
;
Presenilin-2/genetics*
3.Huannao Yicong Formula () regulates γ-secretase activity through APH-1 and PEN-2 gene ragulation pathways in hippocampus of APP/PS1 double transgenic mice.
Zhi-Yong WANG ; Jian-Gang LIU ; Yun WEI ; Mei-Xia LIU ; Qi WANG ; Lin LIANG ; Hui-Min YANG ; Hao LI
Chinese journal of integrative medicine 2017;23(4):270-278
OBJECTIVETo observe the effects of Huannao Yicong Formula (, HYF) on learning and memory and it's regulating effect on γ-secretase related anterior pharynx defective 1 (APH-1), presenilin enhancer-2 (PEN-2) signaling pathway, so as to discuss and further clarify the mechanism of HYF on Alzheimer's disease.
METHODSSixty APP/PS1 transgenic mice, randomly allocated into 4 groups, the model group, the donepezil group (0.65 mg/kg), HYF low-dose group (HYF-L, 5.46 g/kg) and HYF high-dose group (HYF-H, 10.92 g/kg), 15 for each group. Another 15 C57BL/6J mice with the same age and same genetic background were allocated into the control group, proper dosage of drugs or distilled water were given by intragastric administration once daily for 12 weeks. After 12 weeks of administration, the learning and memory abilities of mice in each group was evaluated by the morris water maze test, amyloid precursor protein (APP), Aβand Aβlevels in hippocampus were detected by enzyme-linked immunosorbent assay, γ-secretase was detected by dual luciferase assaying, the levels of APH-1a, hypoxia-inducible factor 1α (HIF-1α), cAMP response element-binding protein (CREB) and PEN-2 and their mRNA expression was measured by Western blot and real-time polymerase chain reaction.
RESULTSHYF can ameliorate learning and memory deficits in APP/PS1 transgenic mice by decreasing the escape latency, improving the number of platform crossing and swimming speed (P<0.01, P<0.05). HYF can decrease the levels of APP, Aβ, Aβand the activity of γ-secretase in hippocampus of Alzheimer's disease model mice. HYF can down-regulate the levels of CREB and PEN-2 and the expression of their mRNA.
CONCLUSIONHYF can improve the learning and memory ability by inhibiting the activity of γ-secretase through the CREB/PEN-2 signaling pathway, and this may be one of the therapeutic mechanisms of HYF in Alzheimer's disease.
Amyloid Precursor Protein Secretases ; metabolism ; Amyloid beta-Protein Precursor ; metabolism ; Animals ; Cyclic AMP Response Element-Binding Protein ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endopeptidases ; genetics ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Female ; Gene Expression Regulation ; drug effects ; Hippocampus ; drug effects ; metabolism ; pathology ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Immunohistochemistry ; Learning ; drug effects ; Male ; Memory Disorders ; drug therapy ; genetics ; Mice, Inbred C57BL ; Mice, Transgenic ; Presenilin-1 ; metabolism ; Presenilin-2 ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Signal Transduction ; drug effects
4.Overexpression of N141I PS2 increases γ-secretase activity through up-regulation of Presenilin and Pen-2 in brain mitochondria of NSE/hPS2m transgenic mice.
Woo Bin YUN ; Jin Ju PARK ; Ji Eun KIM ; Ji Eun SUNG ; Hyun Ah LEE ; Jae Ho LEE ; Chang Jun BAE ; Dae Youn HWANG
Laboratory Animal Research 2016;32(4):249-256
Alzheimer's disease (AD) is known to induce alterations of mitochondrial function such as elevation of oxidative stress and activation of apopotosis. The aim of this study was to investigate the effects of human Presenilin 2 mutant (hPS2m) overexpression on the γ-secretase complex in the mitochondrial fraction. To achieve this, alterations of γ-secretase complex expression and activity were detected in the mitochondrial fraction derived from brains of NSE/hPS2m Tg mice and Non-Tg mice. Herein, the following were observed: i) overexpression of the hPS2m gene significantly up-regulated the deposition of Aβ-42 peptides in the hippocampus and cortex of brain, ii) overexpression of hPS2m protein induced alterations of γ-secretase components such as main component protein and activator protein but not stabilization-related proteins, iii) changes in γ-secretase components induced by overexpression of hPS2m protein up-regulated γ-secretase activity in the mitochondrial fraction, and iv) elevation of γ-secretase activity induced production of Aβ-42 peptides in the mitochondrial fraction. Based on these observations, these results indicate that alteration of γ-secretase activity in cells upon overexpression of hPS2m is tightly linked to mitochondrial dysfunction under the specific physiological and pathological conditions of AD.
Alzheimer Disease
;
Animals
;
Brain*
;
Hippocampus
;
Humans
;
Mice
;
Mice, Transgenic*
;
Mitochondria*
;
Oxidative Stress
;
Peptides
;
Presenilin-2
;
Presenilins*
;
Up-Regulation*
5.Icariin promote maturation of osteoblasts in vitro by an estrogen-independent mechanism.
Wen-Gui SHI ; Xiao-Ni MA ; Yan-Fang XIE ; Jian ZHOU ; Jian ZHOU
China Journal of Chinese Materia Medica 2014;39(14):2704-2709
OBJECTIVETo investigate the estrogenic activity of icariin and genistein with estrogen-dependent human breast cancer (MCF-7) cells.
METHODMCF-7 cells were incubated with media containing 5% charcoal dextran-treated FBS in phenol red-free media for 48 h. CCK-8 kit was used to study the impact of defferent concentration of icariin and genistein on MCF-7 proliferation in vitro. Optimal concentration icariin and genistein were added into medium and total RNA was isolated after 12, 24, 36, 48 h. The gene expression of ERalpha, ERbeta, PS2, and PR were investigated by Real-time RT-PCR Total protein was also isolated and secretion of ERalpha, ERbeta, PS2, and PR were examined by Western blot.
RESULT10 micromol x L(-1) icariin and genistein could promote the proliferation of MCF-7 evidently. However, the ability of genistein to promote the proliferation was better than icariin. With the concentration of 10 micromol x L(-1), genistein group had a stronger expression of ERa, PS2 and PR mRNA levels than icariin while ERbetaexpression had no significant difference in two group. The same effects were detected by western blotting.
CONCLUSIONBoth genistein and icariin have a strong estrogen-like effect, but the estrogenic activity of genistein is stronger than icariin. It showed that the activity of icariin is stron-ger than genistein to promote ROB maturation. So it must be that icariin promotes the maturation of osteoblasts in vitro by a estogen-independent mechanism.
Cell Proliferation ; drug effects ; Estrogen Receptor alpha ; genetics ; metabolism ; Estrogen Receptor beta ; genetics ; metabolism ; Estrogens ; pharmacology ; Flavonoids ; pharmacology ; Gene Expression Regulation ; drug effects ; Genistein ; pharmacology ; Humans ; MCF-7 Cells ; Osteoblasts ; cytology ; drug effects ; metabolism ; Presenilin-2 ; metabolism
6.Study on estrogenic effect of genistein and apigenin in vitro.
Ruiqing ZHU ; Baofeng GE ; Bin YANG ; Keming CHEN ; Yimin WEN ; Jian ZHOU ; Guiqiu HAN ; Guozheng CHENG ; Yuankun ZHAI
China Journal of Chinese Materia Medica 2012;37(15):2317-2322
OBJECTIVETo detect the estrogenic activity of genistein and apigenin with ER-positive cell line MCF-7 human breast cancer cells.
METHODMTT method was adopted to study the impact of genistein and apigenin on MCF-7 proliferation in vitro. Real-time RT-PCR method was used to detect their impact on ERalpha, ERbeta, PR and PS2 mRNA expression levels.
RESULTGenistein and apigenin promoted the proliferation of MCF-7. Genistein 1 x 10(-10) mol x L(-1) group showed a significant increase in the expression of ERa mRNA levels or a 17. 76 times more than the control group and a 1.75 times more than the E2 group. Apigenin notably promoted the PR mRNA expression or a 4. 57 times more than the control group and a 1.11 times more than the E2 group. Both of them had different effect in promoting ERalpha, ERbeta, PR or PS2 mRNA.
CONCLUSIONBoth genistein and apigenin have a strong estrogen-like effect. Although they have different effect in promoting estrogenic response genes (such as ERa, ERbeta, PR and PS2 mRNA), genistein shows a stronger activity than apigenin. It also suggests that the signaling pathways of phytoestrogens showing estrogen-like effect are not completely identical with estrogen pathways. The B-cycle position of flavonoids is one of the key sites to estrogen-like activity, and isoflavones (cycle B on site 3) show stronger estrogen-like activity than flavones (B-cycle lies in site 2).
Apigenin ; pharmacology ; Cell Proliferation ; drug effects ; Estrogen Receptor alpha ; genetics ; metabolism ; Estrogen Receptor beta ; genetics ; metabolism ; Female ; Gene Expression ; drug effects ; Genistein ; pharmacology ; Humans ; MCF-7 Cells ; Phytoestrogens ; pharmacology ; Presenilin-2 ; genetics ; metabolism
7.Oxidative damage increased in presenilin1/presenilin2 conditional double knockout mice.
Dong-Li ZHANG ; Yi-Qun CHEN ; Xu JIANG ; Ting-Ting JI ; Bing MEI
Neuroscience Bulletin 2009;25(3):131-137
OBJECTIVEThis report aims to describe the oxidative damage profile in brain of presenilin1 and presenilin2 conditional double knockout mice (dKO) at both early and late age stages, and to discuss the correlation between oxidative stress and the Alzheimer-like phenotypes of dKO mice.
METHODSThe protein level of Abeta(42) in dKO cortex and free 8-OHdG level in urine were measured by ELISA. Thiobarbituric acid method and spectrophotometric DNPH assay were used to determine the lipid peroxidation and protein oxidation in cortex, respectively. SOD and GSH-PX activities were assessed by SOD Assay Kit-WST and GSH-PX assay kit, separately.
RESULTSSignificant decrease of Abeta(42) was verified in dKO cortex at 6 months as compared to control mice. Although lipid peroxidation (assessed by MDA) was increased only in dKO cortex at 3 months and protein oxidation (assessed by carbonyl groups) was basically unchanged in dKO cortex, ELISA analysis revealed that free 8-OHdG, which was an indicator of DNA lesion, was significantly decreased in urine of dKO mice from 3 months to 12 months. Activities of SOD and GSH-PX in dKO and control cortices showed no statistical difference except a significant increase of GSH-PX activity in dKO mice at 9 months.
CONCLUSIONOxidative damage, especially DNA lesion, was correlated with the neurodegenerative symptoms that appeared in dKO mice without the deposition of Abeta(42). Triggers of oxidative damage could be the inflammatory mediators released by activated microglia and astrocytes.
Age Factors ; Alzheimer Disease ; genetics ; metabolism ; physiopathology ; Amyloid beta-Peptides ; urine ; Animals ; Deoxyguanosine ; analogs & derivatives ; urine ; Disease Models, Animal ; Enzyme-Linked Immunosorbent Assay ; methods ; Glutathione ; metabolism ; Hydrazines ; metabolism ; Lipid Peroxidation ; genetics ; Malondialdehyde ; metabolism ; Mice ; Mice, Inbred CBA ; Mice, Knockout ; physiology ; Oxidation-Reduction ; Oxidative Stress ; physiology ; Peptide Fragments ; urine ; Presenilin-1 ; deficiency ; Presenilin-2 ; deficiency ; Spectrophotometry, Atomic ; methods ; Superoxide Dismutase ; metabolism
8.Clinical Aspects of Genetic Testing for Dementia.
Journal of the Korean Geriatrics Society 2008;12(1):5-10
Dementia is the progressive or chronic dysfunction of cortical or subcortical functions that results in complex cognitive decline and Alzheimer's disease is the most common etiology of dementia. Currently, causal genetic mutations such as amyloid precursor protein, presenilin 1, presenilin 2 in familial Alzheimer's disease and many susceptible genes including polymorphysm of apolipoprotein E have been reported. Furthermore, genetic testings are available in person at risk for Alzheimer's disease. However, besides from results of genetic testing, there are many issues such as economics, ethics, psychological and legal. So clinician should be considered these complexities before ordering genetic test for patients with/without Alzheimer's disease.
Alzheimer Disease
;
Amyloid
;
Apolipoproteins
;
Dementia
;
Genetic Testing
;
Humans
;
Presenilin-1
;
Presenilin-2
9.Pathogenesis of Alzheimer's Dementia.
Journal of the Korean Medical Association 2006;49(8):717-730
Alzhelmer's disease (AD) is the most common cause of dementia that arises on a neuropathological background of amyloid plaques containing betaamylold (Abeta) derived from amyloid precursor protein (APP) and tau-rich neurofibrillary tangles. To date, the cause and progression of familial or sporadic AD have not been fully elucidated. About 10% of all cases of AD occur as autosomal dominant inherited forms of early-onset AD, which are caused by mutations in the genes encoding APP, presenilin-1 and presenilin-2. Proteolytic processing of APP by beta-gamma-secretase and caspase generates Abetaand carboxyl-terminal fragments of APP (APP-CTFs), which have been implicated in the pathogenesis of AD. The presenilins function as one of the gamma-secretases. Abetawhich is the main component of the amyloid plaques found, is known to exert neurotoxicity by accumulating free radicals, disturbing calcium homeostasis, evoking inflammatory response and activating signaling pathways. The CTFs have been found in AD patients' brain and reported to exhibit much greater neurotoxicity than Abeta. Furthermore CTFs are known to impair calcium homeostasis and learning and memory, triggering a strong inflammatory reaction through MAPKs- and NF-kappaB-dependent astrocytosis and iNOS induction. Recently, it was reported that CTF translocated into the nucleus and in turn, affected transcription of genes including glycogen synthase kinase-3beta which results in the induction of tau-rich neurofibrillary tangles and subsequently cell death. One of the hallmarks of AD, neurofibrillary tangles (NFT), is formed by insoluble intracellular polymers of hyperphosphorylated tau that is believed to cause apoptosis by disrupting cytoskeletal and axonal transport. This review covers the processing of APP, toxic mechanisms of Abetaand CTFs of APP, presenilin and also tau in relation to the pathogenesis of AD.
Amyloid
;
Apoptosis
;
Axonal Transport
;
Brain
;
Calcium
;
Cell Death
;
Dementia*
;
Free Radicals
;
Gliosis
;
Glycogen Synthase
;
Homeostasis
;
Learning
;
Memory
;
Neurofibrillary Tangles
;
Plaque, Amyloid
;
Polymers
;
Presenilin-1
;
Presenilin-2
;
Presenilins
10.Expressions of Her-2, EGFR, PS-2 and ER in breast cancer and their clinical implications.
Lei XU ; Zhong-hong BAI ; Ruan-cheng XU ; Hui YAN ; Fang-ju WANG ; Rong-cheng LUO
Journal of Southern Medical University 2006;26(2):231-233
OBJECTIVETo detect the expressions of human epidermal growth factor receptor 2 (Her-2), epidermal growth factor receptor (EGFR), presenilin 2 (PS-2) and estrogen receptor (ER) in breast cancer and discuss their clinical implications.
METHODSThe expressions of Her-2, EGFR, PS-2 and ER were measured immunohistochemically in 108 patients with breast cancer.
RESULTSThe positive expression rates of Her-2, EGFR, PS-2 and ER were 37.0%, 40.7%, 57.4% and 53.7% respectively in the breast cancer patients. The expression of Her-2 was not correlated with EGFR, but inversely correlated with PS-2 and ER. The expressions of Her-2 and EGFR, PS-2, ER were correlated with the histological grades (P<0.05), and Her-2, EGFR and ER expressions with lymph node metastasis (P<0.05). The expressions of Her-2, EGFR, PS-2 and ER did not correlate to the pathological types, patient's age and tumor size (P>0.05).
CONCLUSIONExpressions of Her-2 and EGFR often suggests an unfavorable prognosis while expressions of PS-2 and ER suggest a more favorable one. Expressions of Her-2, EGFR, PS-2 and ER are useful prognostic factors in breast cancer patients.
Adult ; Aged ; Biomarkers, Tumor ; biosynthesis ; Breast Neoplasms ; metabolism ; pathology ; Carcinoma, Ductal, Breast ; metabolism ; pathology ; Female ; Humans ; Immunohistochemistry ; Middle Aged ; Presenilin-2 ; biosynthesis ; Prognosis ; Receptor, Epidermal Growth Factor ; biosynthesis ; Receptor, ErbB-2 ; biosynthesis ; Receptors, Estrogen ; biosynthesis

Result Analysis
Print
Save
E-mail