1.DJ1 Ameliorates AD-like Pathology in the Hippocampus of APP/PS1 Mice.
Yang Yang PENG ; Meng Xin LI ; Wen Jie LI ; Yuan XUE ; Yu Fan MIAO ; Yu Lin WANG ; Xiao Chen FAN ; Lu Lu TANG ; Han Lu SONG ; Qian ZHANG ; Xing LI
Biomedical and Environmental Sciences 2023;36(11):1028-1044
OBJECTIVE:
To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.
METHODS:
Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.
RESULTS:
DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).
CONCLUSION
DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.
Animals
;
Mice
;
Alzheimer Disease/therapy*
;
AMP-Activated Protein Kinases/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Antioxidants/metabolism*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mammals/metabolism*
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
NF-E2-Related Factor 2/metabolism*
;
Presenilin-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
2.Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease.
Jun-Ting YANG ; Zhao-Jun WANG ; Hong-Yan CAI ; Li YUAN ; Meng-Ming HU ; Mei-Na WU ; Jin-Shun QI
Neuroscience Bulletin 2018;34(5):736-746
Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.
Alzheimer Disease
;
metabolism
;
pathology
;
psychology
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Disease Models, Animal
;
Female
;
Hippocampus
;
metabolism
;
pathology
;
Humans
;
Inflammation
;
metabolism
;
pathology
;
psychology
;
Male
;
Maze Learning
;
physiology
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Neurofibrillary Tangles
;
metabolism
;
pathology
;
Plaque, Amyloid
;
metabolism
;
pathology
;
psychology
;
Presenilin-1
;
genetics
;
metabolism
;
Sex Characteristics
;
Spatial Memory
;
physiology
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
;
tau Proteins
;
genetics
;
metabolism
3.Huannao Yicong Formula () regulates γ-secretase activity through APH-1 and PEN-2 gene ragulation pathways in hippocampus of APP/PS1 double transgenic mice.
Zhi-Yong WANG ; Jian-Gang LIU ; Yun WEI ; Mei-Xia LIU ; Qi WANG ; Lin LIANG ; Hui-Min YANG ; Hao LI
Chinese journal of integrative medicine 2017;23(4):270-278
OBJECTIVETo observe the effects of Huannao Yicong Formula (, HYF) on learning and memory and it's regulating effect on γ-secretase related anterior pharynx defective 1 (APH-1), presenilin enhancer-2 (PEN-2) signaling pathway, so as to discuss and further clarify the mechanism of HYF on Alzheimer's disease.
METHODSSixty APP/PS1 transgenic mice, randomly allocated into 4 groups, the model group, the donepezil group (0.65 mg/kg), HYF low-dose group (HYF-L, 5.46 g/kg) and HYF high-dose group (HYF-H, 10.92 g/kg), 15 for each group. Another 15 C57BL/6J mice with the same age and same genetic background were allocated into the control group, proper dosage of drugs or distilled water were given by intragastric administration once daily for 12 weeks. After 12 weeks of administration, the learning and memory abilities of mice in each group was evaluated by the morris water maze test, amyloid precursor protein (APP), Aβand Aβlevels in hippocampus were detected by enzyme-linked immunosorbent assay, γ-secretase was detected by dual luciferase assaying, the levels of APH-1a, hypoxia-inducible factor 1α (HIF-1α), cAMP response element-binding protein (CREB) and PEN-2 and their mRNA expression was measured by Western blot and real-time polymerase chain reaction.
RESULTSHYF can ameliorate learning and memory deficits in APP/PS1 transgenic mice by decreasing the escape latency, improving the number of platform crossing and swimming speed (P<0.01, P<0.05). HYF can decrease the levels of APP, Aβ, Aβand the activity of γ-secretase in hippocampus of Alzheimer's disease model mice. HYF can down-regulate the levels of CREB and PEN-2 and the expression of their mRNA.
CONCLUSIONHYF can improve the learning and memory ability by inhibiting the activity of γ-secretase through the CREB/PEN-2 signaling pathway, and this may be one of the therapeutic mechanisms of HYF in Alzheimer's disease.
Amyloid Precursor Protein Secretases ; metabolism ; Amyloid beta-Protein Precursor ; metabolism ; Animals ; Cyclic AMP Response Element-Binding Protein ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endopeptidases ; genetics ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Female ; Gene Expression Regulation ; drug effects ; Hippocampus ; drug effects ; metabolism ; pathology ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Immunohistochemistry ; Learning ; drug effects ; Male ; Memory Disorders ; drug therapy ; genetics ; Mice, Inbred C57BL ; Mice, Transgenic ; Presenilin-1 ; metabolism ; Presenilin-2 ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Signal Transduction ; drug effects
4.Effects of huannao yicong recipe extract on the learning and memory and related factors of Abeta generation in the brain of APP transgenic mice.
Hao LI ; Ming-Fang LIU ; Jian-Gang LIU ; Long-Tao LIU ; Jie GUAN ; Ling-Ling CAI ; Jia HU ; Yun WEI
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(1):90-94
OBJECTIVETo study the effects of Huannao Yicong Recipe (HNYCR)extract on the learning and memory ability, and the expressions of amyloid precursor protein (APP), beta-site APP-cleaving enzyme 1 (BACE1), presenilin-1 (PS-1), and beta amyloid protein (Abeta)in hippocampus CA1 area of APP transgenic mice, and to explore its mechanisms for treating Alzheimer's disease (AD).
METHODSTotally 3-month-old APP695V7171 transgenic mice were used to establish the AD model in this research. They were randomly divided into the model group, the Donepezil group, the large dose HNYCR extract group, the small dose HNYCR extract group, and the normal control group (C57BL/6J mice), 15 in each group. These animals were gavaged for 4 continuous months. Relevant indicators were detected: Morris water maze test was used to measure the spatial learning and memory ability. The immunohistochemical assay was used to detect the expressions of APP, BACE1, PS-1, and Abeta.
RESULTSThe times of crossing the original platform and the swimming time and distance in the fourth quadrant of the 7-month-old APP transgenic mice were significantly reduced in Morris water maze test, when compared with the normal control group (P < 0.01). The times of crossing original platform and the swimming time and distance in the fourth quadrant of all treatment groups significantly increased in Morris water maze test, when compared with the model group (P < 0.05). The expressions of APP, BACE1, PS-1, and Abeta in hippocampus CA1 area of 7-month-old model mice increased significantly (P < 0.01), when compared with the normal control group. The expressions of APP, BACE1, PS-1, and Abeta in each 7-month-old intervention groups were significantly reduced, when compared with the model group (P < 0.01).
CONCLUSIONEarly application of HNYCR extract can obviously improve the learning and memory ability of APP transgenic mice that has declined, reduce the expressions of APP, BACE1, PS-1, and Abeta in the hippocampal CA1 area, reduce the production of Abeta, and slow down the pathological process of brains in APP transgenic mice.
Alzheimer Disease ; metabolism ; Amyloid Precursor Protein Secretases ; genetics ; metabolism ; Amyloid beta-Peptides ; genetics ; metabolism ; Amyloid beta-Protein Precursor ; genetics ; metabolism ; Animals ; Aspartic Acid Endopeptidases ; genetics ; metabolism ; Brain ; drug effects ; metabolism ; CA1 Region, Hippocampal ; drug effects ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Female ; Male ; Maze Learning ; drug effects ; Memory ; drug effects ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Presenilin-1 ; genetics ; metabolism
5.Effect of curcumin on synapse-related protein expression of APP/PS1 double transgenic mice.
Peng WEI ; Ruisheng LI ; Hong WANG ; Ying REN ; Haiyun SUN ; Jinduo YANG ; Pengwen WANG
China Journal of Chinese Materia Medica 2012;37(12):1818-1821
OBJECTIVETo observe the effect of curcumin on the expression of synapse-related proteins PSD-95 and Shank1 in APP/PS1 double transgenic mice.
METHODThree-month-old APP/PS1 dtg mice were randomly divided into the model group, the positive Rosiglitazone control group and curcumin high (400 mg x kg(-1) x d(-1)), medium (200 mg x kg(-1) x d(-1)) and low (100 mg x kg(-1) x d(-1)) dose groups, with non-genetically modified mice with the same background as the normal group. After the oral administration for three months, immunohistochemistry and Western blot were adopted for detection.
RESULTAccording to the behavioral detection, the treatment group and the model group showed differences in the place navigation test and the spatial probe test to varying degrees (P < 0.01 or P < 0.05). The expression of PSD-95 and Shank1-positive cells of hippocampus CA1 region significantly decreased in model mice compared with normal control group (P < 0.01); while the curcumin intervention group showed recovery to some extend. Western blot results showed that the strap of PSD-95 protein expression became significantly thinner and lighter in the model group compared with the normal control group (P < 0.01); while the curcumin intervention group showed notably thicker and darker straps of PSD-95 protein expression (P < 0.05).
CONCLUSIONCurcumin can increase the expression of synapse-related proteins PSD95 and Shank1 in APP/PS1 double transgenic mice, improve structure and plasticity of synapse in APP/PS1 double transgenic mice and enhance their learning and memory abilities.
Amyloid beta-Protein Precursor ; genetics ; Animals ; CA1 Region, Hippocampal ; drug effects ; metabolism ; Curcumin ; pharmacology ; Disks Large Homolog 4 Protein ; Gene Expression Regulation ; drug effects ; Guanylate Kinases ; metabolism ; Membrane Proteins ; metabolism ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins ; metabolism ; Presenilin-1 ; genetics ; Synapses ; drug effects ; metabolism
6.Expression of the plant viral protease NIa in the brain of a mouse model of Alzheimer's disease mitigates Abeta pathology and improves cognitive function.
Tae Kyung KIM ; Hye Eun HAN ; Hannah KIM ; Jung Eun LEE ; Daehan CHOI ; Woo Jin PARK ; Pyung Lim HAN
Experimental & Molecular Medicine 2012;44(12):740-748
The plant viral protease, NIa, has a strict substrate specificity for the consensus sequence of Val-Xaa-His-Gln, with a scissoring property after Gln. We recently reported that NIa efficiently cleaved the amyloid-beta (Abeta) peptide, which contains the sequence Val-His-His-Gln in the vicinity of the cleavage site by alpha-secretase, and that the expression of NIa using a lentiviral system in the brain of AD mouse model reduced plaque deposition levels. In the present study, we investigated whether exogenous expression of NIa in the brain of AD mouse model is beneficial to the improvement of cognitive deficits. To address this question, Lenti-NIa was intracerebrally injected into the brain of Tg-APPswe/PS1dE9 (Tg-APP/PS1) mice at 7 months of age and behavioral tests were performed 15-30 days afterwards. The results of the water maze test indicated that Tg-APP/PS1 mice which had been injected with Lenti-GFP showed an increased latency in finding the hidden-platform and markedly enhanced navigation near the maze-wall, and that such behavioral deficits were significantly reversed in Tg-APP/PS1 mice injected with Lenti-NIa. In the passive avoidance test, Tg-APP/PS1 mice exhibited a severe deficit in their contextual memory retention, which was reversed by NIa expression. In the marble burying test, Tg-APP/PS1 mice buried marbles fewer than non-transgenic mice, which was also significantly improved by NIa. After behavioral tests, it was verified that the Tg-APP/PS1 mice with Lenti-NIa injection had reduced Abeta levels and plaque deposition when compared to Tg-APP/PS1 mice. These results showed that the plant viral protease, NIa, not only reduces Abeta pathology, but also improves behavioral deficits.
Alzheimer Disease/*metabolism/pathology/physiopathology
;
Amyloid beta-Peptides/*metabolism
;
Amyloid beta-Protein Precursor/genetics
;
Animals
;
Avoidance Learning
;
Brain/*metabolism/pathology/physiopathology
;
*Cognition
;
Cognition Disorders
;
Disease Models, Animal
;
Endopeptidases/*genetics/metabolism
;
Gene Expression
;
Maze Learning
;
Memory
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Plaque, Amyloid/metabolism/*pathology
;
Presenilin-1/genetics
;
Viral Proteins/*genetics/metabolism
7.Intracerebroventricular transplantation of human amniotic epithelial cells ameliorates spatial memory deficit in the doubly transgenic mice coexpressing APPswe and PS1ΔE9-deleted genes.
Shou-ru XUE ; Chong-fang CHEN ; Wan-li DONG ; Guo-zhen HUI ; Tian-jun LIU ; Li-he GUO
Chinese Medical Journal 2011;124(17):2642-2648
BACKGROUNDHuman amniotic epithelial cells (HAECs), which have characteristics of both embryonic and pluripotent stem cells, are therefore a candidate in cell therapy without creating legal or ethical problems. In the present study, we aimed to investigate the effects of intracerebroventricular transplantation of HAECs on doubly transgenic mice of Alzheimer's disease (AD) coexpressing presenilin-1 (PS1) and mutant Sweden amyloid precursor protein (APPswe) genes.
METHODSThe offspring mice genotypes were detected using PCR identification of APPswe and PS1 gene. The doubly transgenic (TG) mice (n = 20) and wild-type (WT) mice (n = 20) were randomly divided into two groups respectively: the transplantation group treated with HAECs and the control group with phosphate buffered saline. Six radial arm water maze test was used to assess the spatial memory in the TG and WT mice. Amyloid plaques and neurofibrillary tangles were analyzed using congo red and acid-silver methenamine staining respectively. Immunofluorescence cytochemistry was used to track the survival of HAECs. Immunohistochemistry was used to determine the expression of octamer-binding protein 4 (Oct-4) and Nanog in the HAECs. High performance liquid chromatography was used to measure acetylcholine in hippocampus. The density of cholinergic neurons in basal forebrain and nerve fibers in hippocampus was measured using acetylcholinesterase staining.
RESULTSAmyloid deposition occurred in hippocampus and frontal cortex in the double TG mice aged 8 months, but not in WT mice. The results also showed that transplanted HAECs can survive for at least 8 weeks and migrate to the third ventricle without immune rejection. The graft HAECs can also express the specific marker Oct-4 and Nanog of stem cell. Compared with the control group, transplantation of HAECs can not only significantly improve the spatial memory of the TG mice, but also increase acetylcholine concentration and the number of hippocampal cholinergic neurites.
CONCLUSIONSThese results demonstrate that intracerebroventricular transplantation of HAECs can improve the spatial memory of the double TG mice. The higher content of acetylcholine in hippocampus released by more survived cholinergic neurites is one of the causes of this improvement.
Acetylcholine ; metabolism ; Alzheimer Disease ; genetics ; metabolism ; therapy ; Amnion ; cytology ; Amyloid beta-Protein Precursor ; genetics ; metabolism ; Animals ; Chromatography, High Pressure Liquid ; Epithelial Cells ; cytology ; transplantation ; Genotype ; Hippocampus ; metabolism ; Homeodomain Proteins ; genetics ; metabolism ; Humans ; Immunohistochemistry ; Memory Disorders ; genetics ; metabolism ; therapy ; Mice ; Mice, Transgenic ; Nanog Homeobox Protein ; Octamer Transcription Factor-3 ; genetics ; metabolism ; Polymerase Chain Reaction ; Presenilin-1 ; genetics ; metabolism
8.Oxidative damage increased in presenilin1/presenilin2 conditional double knockout mice.
Dong-Li ZHANG ; Yi-Qun CHEN ; Xu JIANG ; Ting-Ting JI ; Bing MEI
Neuroscience Bulletin 2009;25(3):131-137
OBJECTIVEThis report aims to describe the oxidative damage profile in brain of presenilin1 and presenilin2 conditional double knockout mice (dKO) at both early and late age stages, and to discuss the correlation between oxidative stress and the Alzheimer-like phenotypes of dKO mice.
METHODSThe protein level of Abeta(42) in dKO cortex and free 8-OHdG level in urine were measured by ELISA. Thiobarbituric acid method and spectrophotometric DNPH assay were used to determine the lipid peroxidation and protein oxidation in cortex, respectively. SOD and GSH-PX activities were assessed by SOD Assay Kit-WST and GSH-PX assay kit, separately.
RESULTSSignificant decrease of Abeta(42) was verified in dKO cortex at 6 months as compared to control mice. Although lipid peroxidation (assessed by MDA) was increased only in dKO cortex at 3 months and protein oxidation (assessed by carbonyl groups) was basically unchanged in dKO cortex, ELISA analysis revealed that free 8-OHdG, which was an indicator of DNA lesion, was significantly decreased in urine of dKO mice from 3 months to 12 months. Activities of SOD and GSH-PX in dKO and control cortices showed no statistical difference except a significant increase of GSH-PX activity in dKO mice at 9 months.
CONCLUSIONOxidative damage, especially DNA lesion, was correlated with the neurodegenerative symptoms that appeared in dKO mice without the deposition of Abeta(42). Triggers of oxidative damage could be the inflammatory mediators released by activated microglia and astrocytes.
Age Factors ; Alzheimer Disease ; genetics ; metabolism ; physiopathology ; Amyloid beta-Peptides ; urine ; Animals ; Deoxyguanosine ; analogs & derivatives ; urine ; Disease Models, Animal ; Enzyme-Linked Immunosorbent Assay ; methods ; Glutathione ; metabolism ; Hydrazines ; metabolism ; Lipid Peroxidation ; genetics ; Malondialdehyde ; metabolism ; Mice ; Mice, Inbred CBA ; Mice, Knockout ; physiology ; Oxidation-Reduction ; Oxidative Stress ; physiology ; Peptide Fragments ; urine ; Presenilin-1 ; deficiency ; Presenilin-2 ; deficiency ; Spectrophotometry, Atomic ; methods ; Superoxide Dismutase ; metabolism
9.Human neuroblastoma cells transfected with two Chinese presenilin 1 mutations are sensitized to trophic factor withdrawal and protected by insulin-like growth factor-1.
Chinese Medical Journal 2008;121(10):910-915
BACKGROUNDTwo novel presenilin 1 (PS1) mutations, V97L and A136G, were recently found to be involved in the early-onset of Alzheimer's disease in two Chinese families. This research aimed to verify their pathological effects.
METHODSThe human neuroblastoma SH-SY5Y cells stably transfected with these two Chinese presenilin 1 mutations were established to explore whether they are sensitive to, or influenced by, serum deprivation and protected by insulin-like growth factor-1 (IGF-1). Apoptosis rate, glucose uptake of the cells and the expression of glucose transport protein 1 (GLUT1) on cell membranes were examined.
RESULTSThe V97L or A136G mutants significantly decreased the cells viability and increased the apoptosis rate when compare to PS1wt and mock transfected cells. IGF-1 was found to improve the viability of these two kinds of mutant cells significantly, and to show a protective effect for the mutants when they were treated with trophic deprivation. The glucose uptake of each transfected cell line increased to about 25% after IGF-1 treatment, GLUT1 expression on the cell membrane increased modestly by about 15% - 20%.
CONCLUSIONSEnhanced sensitivity to trophic withdrawal in the cells transfected with the two Chinese PS1 mutations may contribute to the neuron apoptosis. IGF-1 provided a protective effect to cells, possibly through an enhanced glucose transport and mitochondrial activities.
Apoptosis ; drug effects ; genetics ; physiology ; Asian Continental Ancestry Group ; genetics ; Blotting, Western ; Cell Line, Tumor ; Cell Survival ; drug effects ; genetics ; physiology ; China ; Flow Cytometry ; Glucose ; metabolism ; pharmacokinetics ; Glucose Transporter Type 1 ; metabolism ; Humans ; Insulin-Like Growth Factor I ; pharmacology ; Mutation ; Neuroblastoma ; genetics ; metabolism ; pathology ; Presenilin-1 ; genetics ; metabolism ; physiology
10.Effects of vitamin E on expression of PS-1 and production of Abeta in the hippocampus of female senile rats.
Ya-kun KONG ; Lan-chun YAO ; Chang-zhu LU ; Yi SUN ; Jiang NI
Chinese Journal of Applied Physiology 2007;23(2):237-240
AIMTo observe the expression of Presenilin-1 (PS-1) and production of amyloid beta-protein (Abeta) in hippocampus of female senile rats and to investigate the effect of vitamin E(VE) on preventing Alzheimer's disease after menopause.
METHODSThe animal model was established using female senile rats. Experimental groups (n=8) were respectively given different doses of VE(5 mg/kg, 15 mg/kg, 60 mg/kg) per day. The expression of PS-1 in hippocampus was detected by immunohistochemistry, the level of Abeta in hippocampus was measured by Radioimmunoassay, and neuronal ultrastructure in hippocampal DG area was observed using transmission electron microscope.
RESULTSThe expression of PS-1 in rat hippocampus of senile control group was stronger than that of adult control group. PS-1 expressed weakly in three medication groups along with augmentation of dosage. The levels of Abeta were found to correlate statistically with the expression of PS-1. The content of Abeta in VE groups was significantly decreased compared to that in senile control group (P < 0.01). There were some changes in the neuronal ultrastructure of senile rats. Neurons were gradually recovered in VE groups.
CONCLUSIONVE may depress the production of Abeta by regulating the expression of PS-1, reducing neuronal injuries. VE may play a role in neuronal protection.
Aging ; Alzheimer Disease ; metabolism ; Amyloid beta-Peptides ; metabolism ; Animals ; Female ; Hippocampus ; drug effects ; metabolism ; Presenilin-1 ; metabolism ; Rats ; Rats, Wistar ; Vitamin E ; pharmacology

Result Analysis
Print
Save
E-mail