1.Effect of LncRNA GATA3-AS1 Targeting MiR-515-5p on Cell Proliferation and Apoptosis in Childhood Acute Lymphoblastic Leukemia Cells.
Yan QIN ; Xue-Xue YUN ; Zhong-Mei ZHENG ; Qian XU ; Li-Min ZUO
Journal of Experimental Hematology 2023;31(4):1032-1037
OBJECTIVE:
To investigate the effects of long non-coding RNA (lncRNA) GATA3 antisense RNA 1 (GATA3-AS1) targeting miR-515-5p on the proliferation and apoptosis of childhood acute lymphoblastic leukemia (ALL) cells.
METHODS:
RT-qPCR was used to determine the expression of GATA3-AS1 and miR-515-5p in the plasma of controls and ALL children. Human ALL cells Jurkat were divided into si-GATA3-AS1, si-NC, miR-NC, miR-515-5p, si-GATA3-AS1+anti-miR-NC and si-GATA3-AS1+anti-miR-515-5p groups. CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the cell apoptosis. The targeting relationship between GATA3-AS1 and miR-515-5p was determined by dual-luciferase reporter assay.
RESULTS:
The expression level of GATA3-AS1 in the plasma of ALL children was significantly higher than that of controls (P <0.001), while the expression level of miR-515-5p was significantly lower than that of controls (P <0.001). Compared with the si-NC group, the cell inhibition rate, apoptosis rate, and miR-515-5p expression level in si-GATA3-AS1 group were significantly increased (P <0.001). Compared with the miR-NC group, the cell inhibition rate and apoptosis rate in miR-515-5p group were significantly increased (P <0.001). GATA3-AS1 could directly and specifically bind to miR-515-5p. Compared with the si-GATA3-AS1+anti-miR-NC group, the cell inhibition rate and apoptosis rate in si-GATA3-AS1+anti-miR-515-5p group were significantly decreased (P <0.001).
CONCLUSION
Down-regulation of GATA3-AS1 can inhibit proliferation and induce apoptosis of childhood ALL cells by targeting up-regulation of miR-515-5p expression.
Child
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Antagomirs/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Apoptosis
;
Gene Expression Regulation, Neoplastic
;
GATA3 Transcription Factor/metabolism*
2.Effect of MXRA7 on the Biological Functions of Acute B Lymphoblastic Leukemia Cell Line REH.
Kun-Peng MA ; Zhen-Jiang SUN ; Ying SHEN ; Yi-Qiang WANG ; Dan-Dan LIN
Journal of Experimental Hematology 2023;31(1):50-56
OBJECTIVE:
To discover the relationship between matrix remodeling associated 7 (MXRA7) and acute B lymphoblastic leukemia (B-ALL), and explore the effect of MXRA7 on the biological functions of B-ALL cell line REH.
METHODS:
The expression of MXRA7 in blood diseases was searched and analyzed through BloodSpot database. Real-time qPCR was used to detect the expression level of MXRA7 in B-ALL cell line 697 and REH cells. Lentivirus-mediated shRNA interference technology was utilized to knock down the expression of MXRA7 in REH cells. The effects of MXRA7 on the biological functions of REH cells were studied by in vitro experiments. Cell proliferation was detected by CCK-8 assay, cell cycle was detected by PI staining, cell apoptosis was detected by Annexin V and 7-AAD staining, and the expression of apoptosis pathway related proteins was detected by Western blot.
RESULTS:
Database analysis showed that MXRA7 was highly expressed in B-ALL patients, and real-time qPCR results showed that MXRA7 was also highly expressed in cell lines 697 and REH cells. Knockdown of MXRA7 in REH cells inhibited the cell proliferation and increased the percentage of G0/G1 phase cells. After treatment with cytarabine, the apoptotic ratio was increased in MXRA7-impaired REH cells, and the activation of caspase-3 and caspase-9 were also increased.
CONCLUSION
Knockdown of MXRA7 can reduce the malignancy of REH cells by inhibiting the cell proliferation and increasing the sensitivity of REH cells to cytarabine. These results indicate MXRA7 may be as a novel target for the treatment of B-ALL, and the potential usefulness of MXRA7 in B-ALL deserves further investigation.
Humans
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Cytarabine
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
3.The Effect of SP1 on the Progression of T-cell Acute Lymphoblastic Leukemia.
Shi TANG ; Hao-Biao WANG ; Wei GUO ; Lin ZOU ; Shan LIU
Journal of Experimental Hematology 2023;31(1):57-63
OBJECTIVE:
To study the transcriptional regulation of SP1 on the scaffold protein ARRB1 and its influence on the progression of T-cell acute lymphoblastic leukemia (T-ALL).
METHODS:
pGL3-ARRB1-luc, pCDNA3.1-SP1 and other transcription factor plasmids that might be combined were constructed, and the binding of transcription factors to the promoter of ARRB1 was identified by dual luciferase reporter gene assay. Stable cell lines with over-expressed SP1 (JK-SP1) was constructed by lentiviral transfection, and the expression correlation of SP1 with ARRB1 was demonstrated by RT-PCR and Western blot. Further, the apoptosis, cell cycle and reactive oxygen species (ROS) were detected by flow cytometry. The effect of SP1 on propagation of leukemic cells was observed on NCG leukemic mice.
RESULTS:
The expression of fluorescein were enhanced by co-transfection with pCDNA3.1-SP1 and pGL3-ARRB1-luc plasmids in HEK293T cell line (P<0.001), meanwhile, compared with the control group, the expression of ARRB1 mRNA and protein were increased in JK-SP1 cells (both P<0.01). Further in vitro experiments showed that, compared with the control group, the apoptosis rate was higher (x=22.78%) , the cell cycle was mostly blocked in G1 phase (63.00%), and the content of reactive oxygen species increased in JK-SP1 cells. And in vivo experiments showed that the mice injected with JK-SP1 cells through tail vein had a favorable overall survival time (average 33.8 days), less infiltration in liver and spleen tissue.
CONCLUSION
Transcription factor SP1 promotes the transcription and expression of ARRB1 by binding the the promoter of ARRB1 directly, thus delays the progress of T-ALL in vitro and in vivo. The study improves the pathogenesis of ARRB1 regulating the initiation and development of T-ALL, and provides theoretical basis for the development of new possible targeted drugs.
Humans
;
Animals
;
Mice
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
HEK293 Cells
;
Reactive Oxygen Species
;
Transcription Factors
;
T-Lymphocytes
;
Cell Line, Tumor
;
Sp1 Transcription Factor/metabolism*
4.The Mechanism of miR-1294 Targeting SOX15 to Regulate Wnt/β-catenin Signaling Pathway and Promote the Proliferation of Acute Lymphoblastic Leukemia Cells in Children.
Hong-Xia CEN ; Si-Ming CAI ; Hong-Yu JIANG ; Zhao-Mei LIAO ; Dong-Guang HAN
Journal of Experimental Hematology 2023;31(2):344-351
OBJECTIVE:
To explore the effect of abnormal miRNA expression on the proliferation of pediatric acute lymphoblastic leukemia (ALL) cells and its related mechanism.
METHODS:
15 children with ALL and 15 healthy subjects were collected from the Second Affiliated Hospital of Hainan Medical University from July 2018 to March 2021. MiRNA sequencing was performed on their bone marrow cells, and validated using qRT-PCR. MiR-1294 and miR-1294-inhibitory molecule (miR-1294-inhibitor) were transfected into Nalm-6 cells, and the proliferation of Nalm-6 cells was detected by CCK-8 and colony formation assays. Western blot and ELISA were used to detect apoptosis of Nalm-6 cells. Biological prediction of miR-1294 was performed to find the target gene, which was verified by luciferase reporter assay. Si-SOX15 was transfected into Nalm-6 cells, Western blot was used to detect the expression of Wnt signaling pathway-related proteins and to verify the effect of si-SOX15 on the proliferation and apoptosis of Nalm-6 cells.
RESULTS:
Compared with healthy subjects, 22 miRNAs were significantly upregulated in bone marrow cells of ALL patients, of which miR-1294 was the most significantly upregulated. In addition, the expression level of SOX15 gene was significantly reduced in bone marrow cells of ALL patients. Compared with the NC group, the miR-1294 group showed increased protein expression levels of Wnt3a and β-catenin, faster cell proliferation, and more colony-forming units, while caspase-3 protein expression level and cell apoptosis were reduced. Compared with the NC group, the miR-1294-inhibitor group showed reduced protein expression levels of Wnt3a and β-catenin, slower cell proliferation, and fewer colony-forming units, while caspase-3 protein expression level was increased and apoptosis rate was elevated. miR-1294 had a complementary base-pair with the 3'UTR region of SOX15 , and miR-1294 directly targeted SOX15 . The expression of miR-1294 was negatively correlated with SOX15 in ALL cells. Compared with the si-NC group, the si-SOX15 group showed increased protein expression levels of Wnt3a and β-catenin, accelerated cell proliferation, and decreased caspase-3 protein expression level and cell apoptosis rate.
CONCLUSION
MiR-1294 can target and inhibit SOX15 expression, thus activating the Wnt/β-Catenin signaling pathway to promote the proliferation of ALL cells, inhibit cell apoptosis, and ultimately affect the disease progression.
Humans
;
Child
;
beta Catenin/genetics*
;
Wnt Signaling Pathway
;
Caspase 3/metabolism*
;
Cell Line, Tumor
;
MicroRNAs/genetics*
;
Cell Proliferation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
Apoptosis
;
SOX Transcription Factors/metabolism*
5.Clinical Significance of SFRP1 Gene Methylation in Patients with Childhood Acute Lymphoblastic Leukemia.
Jing YAN ; Wen-Peng WANG ; Xuan LI ; Wei HAN ; Feng-Qi QI ; Ji-Zhao GAO
Journal of Experimental Hematology 2023;31(2):377-382
OBJECTIVE:
To investigate the clinical significance of SFRP1 gene and its methylation in childhood acute lymphoblastic leukemia (ALL) .
METHODS:
Methylation-specific PCR (MSP) was used to detect the methylation status of SFRP1 gene in bone marrow mononuclear cells of 43 children with newly diagnosed ALL before chemotherapy (primary group) and when the bone marrow reached complete remission d 46 after induction of remission chemotherapy (remission group), the expression of SFRP1 mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of SFRP1 protein was detected by Western blot, and clinical data of children were collected, the clinical significance of SFRP1 gene methylation in children with ALL was analyze.
RESULTS:
The positive rate of SFRP1 gene promoter methylation in the primary group (44.19%) was significantly higher than that in the remission group (11.63%) (χ2=11.328, P<0.05). The relative expression levels of SFRP1 mRNA and protein in bone marrow mononuclear cells of children in the primary group were significantly lower than those in the remission group (P<0.05). Promoter methylation of SFRP1 gene was associated with risk level (χ2=15.613, P=0.000) and survival of children (χ2=6.561, P=0.010) in the primary group, children with SFRP1 hypermethylation had significantly increased risk and shortened event-free survival time, but no significant difference in other clinical data.
CONCLUSION
Hypermethylation of SFRP1 gene promoter may be involved in the development of childhood ALL, and its hypermethylation may be associated with poor prognosis.
Child
;
Humans
;
Clinical Relevance
;
DNA Methylation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Bone Marrow/metabolism*
;
RNA, Messenger/metabolism*
;
Membrane Proteins/genetics*
;
Intercellular Signaling Peptides and Proteins/metabolism*
6.Study on the Mechanism of Multi-Drug Resistance of Agaricus Blazei Extract FA-2-b-β Mediated Wnt Signaling Pathway to Reverse Acute T Lymphoblastic Leukemia.
Wen-Wen FENG ; Yu BAI ; Dong-Ping WANG ; Fu-Yan FAN ; Yan-Qing SUN
Journal of Experimental Hematology 2023;31(3):621-627
OBJECTIVE:
To investigate the mechanism of drug reversing resistance of Agaricus blazei extract FA-2-b-β on T cell acute lymphoblastic leukemia (T-ALL) cell lines.
METHODS:
Cell proliferation was detected by CCK-8 assay; the apoptosis, cell cycle mitochondrial membrane potential, and intracellular rhodamine accumulation were detected by flow cytometry, and apoptosis-related gene and protein expression were detected by qPCR and Western blot; the membrane surface protein MDR1 was observed by immunofluorescence microscopy.
RESULTS:
Different concentrations of FA-2-b-β significantly inhibited proliferation and induced apoptosis of CCRF-CEM and CEM/C1 (P<0.05), and CCRF-CEM cell cycle were arrested at S phase, and CEM/C1 cells were arrested at G0/G1 phase. Western blot and qPCR results show that FA-2-b-β inhibited ABCB1、ABCG2、CTNNB、MYC and BCL-2 expression, but upregulated Bax expression. In addition, FA-2-b-β reversed the resistance characteristics of CEM/C1 drug-resistance cells, which decreased mitochondrial membrane potential, and significantly increased the intracellular rhodamine accumulation, and weakening of the expression of the membrane surface protein MDR1. With the Wnt/β-catenin inhibitor (ICG001), the process was further intensified.
CONCLUSION
Agaricus Blazei Extract FA-2-b-β inhibits cell proliferation, promotes apoptosis, regulates the cell cycle, reduces mitochondrial energy supply, and down-regulate MDR1 expression to reverse the resistance of CEM/C1, which all suggest it is through regulating the Wnt signaling pathway in T-ALL.
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Wnt Signaling Pathway
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Apoptosis
;
Drug Resistance, Multiple
;
Membrane Proteins
;
Cell Line, Tumor
;
Cell Proliferation
7.Expression and Clinical Significance of Exosome Derived MiR-181b-5p in Children with Acute Lymphoblastic Leukemia.
Yi HONG ; Kang-Kang LIU ; Ning-Ling WANG ; Zhi-Wei XIE ; Jin-Hua CHU
Journal of Experimental Hematology 2023;31(3):643-648
OBJECTIVE:
To explore the expression level of exosome derived miR-181b-5p in different disease stages of children with acute lymphoblastic leukemia and its relationship with clinical characteristics.
METHODS:
Bone marrow plasma samples of 86 children with ALL were collected. Exosomes were extracted by exosome extraction kit, and RNA in exosomes was extracted by TRIzol method. The levels of miR-181b-5p in the blood plasma exosomes of the patients in the newly diagnosed group, relapse group, remission group and control group were detected by qRT- PCR. The difference of miR-181b-5p expression level in each group was compared and analyzed, and the relationship between miR-181b-5p expression level and clinical characteristics was analyzed.
RESULTS:
The expression level of exosomal miR-181b-5p in the newly diagnosed group and the relapsed group was significantly lower than that in the remission group and the control group (P< 0.05). The expression level of exosomal miR-181b-5p in T-ALL children was higher than that in B-ALL children (P<0.05). The expression level of plasma exosomal miR-181b-5p in male children was higher than that in female children (P<0.01).
CONCLUSION
Exosome derived miR-181b-5p changes dynamically in the course of ALL children, and can be used as a marker miRNA to monitor disease status. Exosomes can transmit information in the tumor microenvironment and serve as a potential carrier for biomolecular targeted therapy.
Humans
;
Male
;
Female
;
Child
;
Exosomes/metabolism*
;
Clinical Relevance
;
MicroRNAs/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Tumor Microenvironment
8.Effect of Curcumin on Apoptosis of Acute T-Lymphoblastic Leukemia Cells induced by UMI-77 and Its Related Mechanism.
Zheng XU ; Ling SONG ; Yu-Hui WU ; Bo CAO
Journal of Experimental Hematology 2022;30(3):695-703
:
AbstractObjective: To explore the effect and mechanism of curcumin on human T-cell acute lymphoblastic leukemia (T-ALL) cell apoptosis induced by Mcl-1 small molecule inhibitors UMI-77.
METHODS:
T-ALL cell line Molt-4 was cultured, and the cells were treated with different concentrations of curcumin and Mcl-1 small molecule inhibitor UMI-77 for 24 h. The MTT method was used to detect the cell survival rate after different treatment; According to the results of curcumin and UMI-77, the experimental settings were divided into control group, curcumin group (20 μmol/L curcumin treated cells), UMI-77 group (15 μmol/L Mcl-1 small molecule inhibitor UMI-77 treated cells) and curcumin+ UMI-77 group (20 μmol/L curcumin and 15 μmol/L Mcl-1 small molecule inhibitor UMI-77 treated cells), MTT method was used to detect cell proliferation inhibition rate, Annexin V-FITC/PI double staining method and TUNEL staining were used to detect cell apoptosis, DCFH-DA probe was used to detect cell reactive oxygen species, JC-1 fluorescent probe was used to detect mitochondrial membrane potential, Western blot was used to detect the expression levels of apoptosis-related proteins and Notch1 signaling pathway-related proteins.
RESULTS:
After the treatment of Molt-4 cells with different concentrations of curcumin and Mcl-1 small molecule inhibitor UMI-77, the cell survival rate was decreased (P<0.05); Compared with the control group, the cell proliferation inhibition rate of the curcumin group and the UMI-77 group were increased, the apoptosis rate of cell was increased, the level of ROS was increased, the protein expression of Bax, Caspase-3 and Caspase-9 in the cells were all increased, and the protein expression of Bcl-2 was reduced (P<0.05); Compared with the curcumin group or UMI-77 group, the cell proliferation inhibition rate and apoptosis rate of the curcumin+UMI-77 group were further increased, and the level of ROS was increased. At the same time, the protein expression of Bax, Caspase-3 and Caspase-9 in the cells were all increased, the protein expression of Bcl-2 was reduced (P<0.05); In addition, the mitochondrial membrane potential of the cells after curcumin treatment was decreased, and the proteins expression of Notch1 and HES1 were reduced (P<0.05).
CONCLUSION
Curcumin can enhance the apoptosis of T-ALL cells induced by Mcl-1 small molecule inhibitor UMI-77 by reducing the mitochondrial membrane potential, the mechanism may be related to the inhibition of Notch1 signaling pathway.
Apoptosis
;
Apoptosis Regulatory Proteins
;
Caspase 3/metabolism*
;
Caspase 9/pharmacology*
;
Cell Line, Tumor
;
Curcumin/pharmacology*
;
Humans
;
Myeloid Cell Leukemia Sequence 1 Protein/metabolism*
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Reactive Oxygen Species/pharmacology*
;
Sulfonamides
;
Thioglycolates
;
bcl-2-Associated X Protein/pharmacology*
9.Efficacy of Chimeric Antigen Receptor T Cell in the Treatment of Refractory/Recurrent B Acute Lymphocytic Leukemia in Children.
Fan YANG ; Tian-Yi WANG ; Wei-Wei DU ; Hai-Long HE ; Pei-Fang XIAO ; Ye LU ; Shao-Yan HU ; Ben-Shang LI ; Jun LU
Journal of Experimental Hematology 2022;30(3):718-725
OBJECTIVE:
To observe the efficacy of chimeric antigen receptor T cell (CAR-T) in the treatment of children with refractory/recurrent B acute lymphocytic leukemia (B-ALL).
METHODS:
Thirty-two patients with r/r B-ALL were treated by CAR-T, the recurrence and death respectively were the end point events to evaluate the efficacy and safety of CAR-T.
RESULTS:
The median age of the patients was 7.5 (2-17.5) years old; 40 times CAR-T were received in all patients and the median number of CAR-T was 0.9×107/kg; efficacy evaluation showed that 2 cases died before the first evaluation. Thirty patients showed that 3, 6, and 9-moth RFS was (96.3±3.6)%, (81.4±8.6)% and (65.3±12.5)%, respectively, while 3, 6, and 9-month OS was all 100%, and 12, 24-month OS was (94.7±5.1)% and (76±12.8)%. BM blasts≥36% before reinfusion and ferritin peak≥2 500 ng/ml within two weeks of CAR-T cell reinfusion were associated with recurrence. Adverse reactions mainly included cytokine release syndrome (CRS) and CART-cell-related encephalopathy syndrome (CRES), CRS appeared in 26 patients within a week of CAR-T cell reinfusion. CRES reaction was detected in 12 patients. Eighteen patients received intravenous drip of tocilizumab, among them, 12 combined with glucocorticoid. CRS and CRES reactions were relieved within one week after treatment. Hormone dosage was related to the duration of remission in patients, and the cumulative dose of methylprednisolone≥8 mg/kg showed a poor prognosis.
CONCLUSION
CAR-T is a safe and effective treatment for r/r B-ALL, most CRS and CRES reactions are reversible. BM blasts ≥36% before reinfusion and cumulative dose of methylprednisolone ≥8 mg/kg after reinfusion both affect the therapeutic effect. Ferritin≥2 500 ng/ml within two weeks after reinfusion is related to disease recurrence and is an independent prognostic risk factor.
Adolescent
;
Antigens, CD19
;
Child
;
Child, Preschool
;
Chronic Disease
;
Ferritins
;
Humans
;
Immunotherapy, Adoptive
;
Methylprednisolone
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy*
;
Receptors, Antigen, T-Cell
;
Receptors, Chimeric Antigen/metabolism*
;
Recurrence
;
T-Lymphocytes
10.Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia.
Mengping XI ; Shanshan GUO ; Caicike BAYIN ; Lijun PENG ; Florent CHUFFART ; Ekaterina BOUROVA-FLIN ; Sophie ROUSSEAUX ; Saadi KHOCHBIN ; Jian-Qing MI ; Jin WANG
Frontiers of Medicine 2022;16(3):442-458
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.
Aminopyridines
;
Benzamides
;
Cell Line, Tumor
;
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Receptor, Notch1/metabolism*
;
Signal Transduction
;
T-Lymphocytes/metabolism*

Result Analysis
Print
Save
E-mail