2.Organoids: approaches and utility in cancer research.
Bingrui ZHOU ; Zhiwei FENG ; Jun XU ; Jun XIE
Chinese Medical Journal 2023;136(15):1783-1793
Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.
Humans
;
Neoplasms/genetics*
;
Organoids/pathology*
;
Carcinogenesis
;
Models, Biological
;
Precision Medicine/methods*
;
Tumor Microenvironment
3.Short-term efficacy of digitally-assisted traditional Chinese medicine manual reduction combined with 3D printed splint in the treatment of AO type-A distal radius fractures.
Guo-Liang LI ; Jian-Yong ZHAO ; Xiao-Ming LI ; Tie-Qiang WANG ; Kang CHEN ; Qi-Lin LIU
China Journal of Orthopaedics and Traumatology 2023;36(9):809-814
Objective To explore the short-term efficacy of digitally-assisted traditional Chinese medicine manual reduction combined with 3D printed splint in the treatment of AO type-A distal radius fractures, and explore the quantification of traditional Chinese medicine manual reduction and personalized improvement of splinting. Methods The clinical data of 50 patients with AO type-A distal radius fractures, who received treatment at the outpatient department of Cangzhou Integrated Traditional Chinese and Western Medicine Hospital in Hebei Province, were retrospective analyzed. The patient cohort included 22 females and 28 males, with ages ranging from 25 to 75 years old. Among them, 27 cases presented with distal radius fractures on the left side, and 24 cases on the right side. The patients were categorized into two groups: treatment group (n=25) and control group(n=25). There were 13 males and 12 females in the treatment group, with an average age of (56.2±5.5) years old. Treatment approach for this group involved several steps. Initially, Mimics Research software was used to conduct comprehensive analysis of complete CT data from the affected limb, resulting in the creation of a three-dimensional model. Subsequently, 3D models of the bones and skin contours, stored as STL format files, were imported into the Materialise Magics 23.0 software for model processing and repair. This facilitated the simulation of reduction and recording of displacement data, effectively generating a "digital prescription" to guide and quantify traditional Chinese medicine manipulation procedures. Finally, a personalized 3D printed splint was applied for fixation treatment. There were 15 males and 10 females in the control group, with an average age of (53.32±5.28) years old. These patients were treated with manualreduction combined with traditional splinting. The clinical efficacy of the two groups was assessed in terms of fracture reduction quality, fracture healing time, Gartland-Werley wrist joint score and X-ray parameters (palminclination angle, ulnar deviation angle, radius height) at 6 weeks post-operatively. Results The treatment group exhibited a shorter duration for achieving clinical healing compared to the control group (P<0.05). Six weeks post-operatively, the treatment group demonstrated higher wrist joint function scores, and a higher proportion of excellent and good outcomes than the control group(P<0.05). The treatment group was superior to the control group in terms of imaging parameters 6 weeks post-operatively (P<0.05). Conclusion By quantifying skin contours through digital simulation prescription reduction, a personalized 3D printed splint is developed to effectively stabilize fractures, enhancing localized fixation while ensuring greater adherence, stability, and comfort. This innovative approach offers personalized treatment for AO type-A distal radius fractures and presents a novel, precise treatment strategy for consideration.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
East Asian People
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Splints
;
Wrist Fractures/therapy*
;
Medicine, Chinese Traditional/methods*
;
Therapy, Computer-Assisted/methods*
;
Manipulation, Orthopedic/methods*
;
Tomography, X-Ray Computed
;
Precision Medicine/methods*
4.Research progress in mRNA drug modification and delivery systems.
Journal of Zhejiang University. Medical sciences 2023;52(4):439-450
Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5' and 3' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.
RNA, Messenger/genetics*
;
Cytoplasm
;
Nanoparticles
;
Precision Medicine
5.MRI-derived radiomics models for diagnosis, aggressiveness, and prognosis evaluation in prostate cancer.
Xuehua ZHU ; Lizhi SHAO ; Zhenyu LIU ; Zenan LIU ; Jide HE ; Jiangang LIU ; Hao PING ; Jian LU
Journal of Zhejiang University. Science. B 2023;24(8):663-681
Prostate cancer (PCa) is a pernicious tumor with high heterogeneity, which creates a conundrum for making a precise diagnosis and choosing an optimal treatment approach. Multiparametric magnetic resonance imaging (mp-MRI) with anatomical and functional sequences has evolved as a routine and significant paradigm for the detection and characterization of PCa. Moreover, using radiomics to extract quantitative data has emerged as a promising field due to the rapid growth of artificial intelligence (AI) and image data processing. Radiomics acquires novel imaging biomarkers by extracting imaging signatures and establishes models for precise evaluation. Radiomics models provide a reliable and noninvasive alternative to aid in precision medicine, demonstrating advantages over traditional models based on clinicopathological parameters. The purpose of this review is to provide an overview of related studies of radiomics in PCa, specifically around the development and validation of radiomics models using MRI-derived image features. The current landscape of the literature, focusing mainly on PCa detection, aggressiveness, and prognosis evaluation, is reviewed and summarized. Rather than studies that exclusively focus on image biomarker identification and method optimization, models with high potential for universal clinical implementation are identified. Furthermore, we delve deeper into the critical concerns that can be addressed by different models and the obstacles that may arise in a clinical scenario. This review will encourage researchers to design models based on actual clinical needs, as well as assist urologists in gaining a better understanding of the promising results yielded by radiomics.
Male
;
Humans
;
Artificial Intelligence
;
Magnetic Resonance Imaging/methods*
;
Prostatic Neoplasms/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
;
Precision Medicine
;
Retrospective Studies
6.Research progress of metabolomics in acute kidney injury.
Heng ZHAO ; Fang FENG ; Chenming DONG
Chinese Critical Care Medicine 2023;35(10):1111-1115
Acute kidney injury (AKI) is caused by a variety of diseases, which leads to acute renal function decline, azotemia, water and electrolyte disorders and acid-base balance disorders. Metabolomics is a research method that can quantitatively analyze all metabolites in an organism and find the relative relationship between metabolites and physiological and pathological changes. In recent years, several metabolites screened based on metabolomics have been proposed as potential biomarkers to assess the early development and prognosis of AKI and for the discovery of unknown potential therapeutic targets. Based on metabolomics, this paper reviews the risk prediction, early diagnosis, disease monitoring, prognosis assessment and the application of corresponding drugs for AKI, so as to provide reference for precision medicine.
Humans
;
Acute Kidney Injury/metabolism*
;
Metabolomics
;
Prognosis
;
Biomarkers
;
Precision Medicine
7.Tensor decomposition: new strategy for deciphering mechanism of precision medicine for same treatment of different diseases.
Qi SONG ; Jun LIU ; Zhong WANG
China Journal of Chinese Materia Medica 2023;48(3):841-846
The aging society has led to a substantial increase in the number of clinical comorbidities. To meet the needs of comorbidity treatment, polypharmacy is widely used in clinical practice. However, polypharmacy has drawbacks such as treatment conflict. Same treatment of different diseases refers to treating different diseases with same treatment. Therefore, the principle of same treatment of different diseases can alleviate the problems caused by polypharmacy. Under the research background of precision medicine, it becomes possible to explore the mechanism of same treatment of different diseases and achieve its clinical application. However, drugs successfully developed in the past have revealed shortcomings in clinical use. To better interpret the mechanism of precision medicine for same treatment of different diseases, under the multi-dimensional attributes including dynamic space and time, omics was performed, and a new strategy of tensor decomposition was proposed. With the characteristics of complete data, tensor decomposition is advantageous in data mining and can fully grasp the connotation of precision treatment of different diseases with same treatment under dynamic spatiotemporal changes. This method is used for drug repositioning in some biocomputations. By taking advantage of the dimensionality reduction of tensor decomposition and integrating the dual influences of time and space, this study achieved accurate target prediction of same treatment of different diseases at each stage, and discovered the mechanism of precision medicine of same treatment for different diseases, providing scientific support for precision prescription and treatment of different diseases with same treatment in clinical practice. This study thus conducted preliminary exploration of the pharmacological mechanism of precision Chinese medicine treatment.
Humans
;
Data Mining
;
Medicine, East Asian Traditional
;
Precision Medicine
8.Research progress on genome-guided precision oncology and development ideas of antitumor Chinese medicine.
China Journal of Chinese Materia Medica 2023;48(6):1421-1430
Genome-guided oncology refers to a new treatment concept that transcends histological classification and pathological ty-ping and uses drugs according to the genetic characteristics of tumors. New drug development technology and clinical trial design based on this concept provide new ideas for the clinical application of precision oncology. The multi-component and multi-target characteristics of Chinese medicine provide rich resources for the development of tumor-targeting drugs from natural products, and the design of the master protocol trial aiming at the characteristics of precision oncology supports the rapid clinical screening of effective tumor-targeting drugs. The emergence of the synthetic lethality strategy breaks through the bottleneck that the drug can only target the oncogene but cannot do anything to the tumor suppressor gene with the loss-of-function mutation in the past. With the rapid development of high-throughput sequencing technology, the cost of sequencing is also decreasing. For the development of tumor-targeting drugs, how to keep up with the update speed of target information is a difficult problem of concern. Based on the integration of innovative ideas and me-thods of precision oncology, network pharmacology, and synthetic lethality strategy on synthetic lethal interaction network of antitumor Chinese medicine compatibility formula design, and the combination of improvement of innovative clinical trial methods, such as master protocol trial, basket trial, and umbrella trial, unique advantages of Chinese medicine are expected to be exerted beyond the antibody-based drugs and small molecule-based drugs and corresponding targeted drugs are potentially developed for clinical application.
Humans
;
Neoplasms/genetics*
;
Medicine, Chinese Traditional
;
Precision Medicine/methods*
;
Medical Oncology
;
Antineoplastic Agents/therapeutic use*
9.Research advances of various omics analyses in chronic refractory wounds on body surface.
Chinese Journal of Burns 2023;39(1):75-80
The diagnosis and treatment of chronic refractory wounds on body surface has always been full of challenges, and it also poses a huge burden on medical care and society. High-throughput sequencing combined with omics analysis can reveal potential mechanisms of chronic wound formation, and identify potential biomarkers related to diagnosis, prognosis, and screening of chronic wound. Combined with multiple levels of omics analysis, the detailed molecular mechanism of chronic wound development can be further explored and understood, so as to provide clues for the formulation of personalized treatment methods and lay a solid foundation for the precision medicine of chronic wounds. Therefore, this review addresses the recent progress of various omics analyses in chronic refractory wounds on body surface.
Precision Medicine/methods*
;
Biomarkers
10.A new target of precision medicine in sepsis: gut microbiome modified tryptophan metabolism.
Xinlei HE ; Xiao CUI ; Yuxin LENG
Chinese Critical Care Medicine 2023;35(7):764-768
Sepsis is a life-threatening organ dysfunction caused by dysregulated host responses to infection. Despite significant advances in anti-infective, immunomodulatory, and organ function support technologies, the precise and targeted management of sepsis remains a challenge due to its high heterogeneity. Studies have identified disturbed tryptophan (TRP) metabolism as a common mechanism in multiple diseases, which is involved in both immune regulation and the development of multi-organ damages. The rise of research on intestinal microflora has further highlighted the critical role of microflora-regulated TRP metabolism in pathogen-host interactions and the "cross-talk" among multi-organs, making it a potential key target for precision medicine in sepsis. This article reviews TRP metabolism, the regulation of TRP metabolism by the intestinal microflora, and the characteristics of TRP metabolism in sepsis, providing clues for further clinical targeting of TRP metabolism for precision medicine in sepsis.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Tryptophan/metabolism*
;
Precision Medicine
;
Sepsis

Result Analysis
Print
Save
E-mail