1.Effect of Low Dose of Chicken Infectious Anemia Virus in Attenuated Vaccine on SPF Chicken Body Weight and Vaccine Immune Antibody.
Lichun FANG ; Xiaohan LI ; Zhihao REN ; Yang LI ; Yixin WANG ; Zhizhong CUI ; Shuang CHANG ; Peng ZHAO
Chinese Journal of Virology 2016;32(2):190-194
		                        		
		                        			
		                        			In order to observe the effect of the immune and weight of chickens after use the attenuated vaccine with low dose of chicken infectious anemia virus (CIAV). In this study, the effects of low dose of CIAV on the weight of SPF chickens and NDV antibody production were observed by simulated experiments. The results showed that 10 EID50 and 5 EID50 CIAV per plume attenuated NDV vaccines were used to cause the weight loss of SPF chickens. Compared with the use of the non contaminated vaccine group, it has significant difference. And NDV antibody levels compared with the use of the non contaminated groups also decreased after use the vaccine with two doses of CIAV contaminated. It has significant difference. A certain proportion of CIAV antibody positive was detected at the beginning of the second week after use the NDV vaccine with two doses of CIAV contaminated. The detection of a high proportion of CIAV nucleic acid was detected in the first week after the use of a contaminated vaccine. The results of the study demonstrate the effects of CIAV pollution on the production and immune function of SPF chickens, and it is suggested that increasing the detection of viral nucleic acid can help save time and improve the detection rate in the detection of exogenous virus contamination by SPF chicken test method.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Chicken anemia virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Circoviridae Infections
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			veterinary
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Specific Pathogen-Free Organisms
		                        			;
		                        		
		                        			Vaccines, Attenuated
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
2.Sequencing and Serologic Identification of S1 Genes of Infectious Bronchitis Viruses Isolated during 2012-2013 in Guangxi Province, China.
Lihua ZHANG ; Cuilan WU ; Zhipeng ZHANG ; Yining HE ; Heming LI ; Lili QIN ; Tianchao WEI ; Meilan MO ; Ping WEI
Chinese Journal of Virology 2016;32(1):62-69
		                        		
		                        			
		                        			We wished to ascertain the prevalence as well as the genetic and antigenic variation of infectious bronchitis viruses (IBVs) circulating in the Guangxi Province of China in recent years. The S1 gene of 15 IBV field isolates during 2012-2013 underwent analyses in terms of the similarity of amino-acid sequences, creation of phylogenetic trees, recombination, and serologic identification. Similarities in amino-acid sequences among the 15 isolates of the S1 gene were 54.3%-99.6%, and 43.3%-99.3% among 15 isolates and reference strains. Compared with the vaccine strain H120, except for GX-YL130025, the other 14 isolates showed a lower similarity of amino-acid sequences of the S1 gene (65.1-81.4%). Phylogenetic analyses of the S1 gene suggested that 15 IBV isolates were classified into eight genotypes, with the predominant genotype being new-type II. Recombination analyses demonstrated that the S1 gene of the GX-NN130048 isolate originated from recombination events between vaccine strain 4/91 and a LX4-like isolate. Serotyping results suggested that seven serotypes prevailed during 2012-2013 in Guangxi Province, and that only one isolate was consistent with the vaccine strain H120 in serotype (which has been used widely in recent years). The serotype of recombinant isolate GX-NN130048 was different from those of its parent strains. These results suggested that not only the genotype, but also the serotype of IBV field isolates in Guangxi Province had distinct variations, and that increasing numbers of genotypes and serotypes are in circulation. We showed that recombination events can lead to the emergence of new serotypes. Our study provides new evidence for understanding of the molecular mechanisms of IBV variations, and the development of new vaccines against IBVs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			Coronavirus Infections
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			veterinary
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Genetic Variation
		                        			;
		                        		
		                        			Genotype
		                        			;
		                        		
		                        			Infectious bronchitis virus
		                        			;
		                        		
		                        			classification
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Sequence Homology, Amino Acid
		                        			;
		                        		
		                        			Spike Glycoprotein, Coronavirus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
3.Development and evaluation of an inactivated bivalent vaccine against duck viral hepatitis.
Fenggui YIN ; Li JING ; Shuang ZHANG ; Meng YU ; Wanlin ZHANG ; Guobing FAN ; Xiukai DONG ; Wenjun LIU
Chinese Journal of Biotechnology 2015;31(11):1579-1588
		                        		
		                        			
		                        			The rapid mutation and widely spread of duck hepatitis A virus (DHAV) lead to the vast economic loss of the duck industry. To prepare and evaluate bivalent inactivated vaccine laboratory products of DHAV, 6 strains were screened from 201 DHAV-1 strains and 38 DHAV-3 strains by using serotype epidemiological analysis in most of the duck factory. Vaccine candidate strains were selected by ELD50 and LD50 tests in the 6 strains. Continuously passaged, the 5th passaged duck embryos bodies grinding fluid was selected as vaccine virus seeds. The virus seeds were treated with formaldehyde and water in oil in water (W/O/W) emulsions, making into three batches of two bivalent inactivated vaccine laboratory products. The safety test, antibody neutralization test, challenged protection and cross immune protection experiment suggested that the vaccines possessed good safety, and neutralizing antibodies were detected at 7th day and the challenged protection rate reached 90% to 100% at the 14th and 21st day. Moreover, immune duration of ducklings lasted more than five weeks. However, cross-immunity protection experiments with DHAV-SH and DHAV-FS only had 20%-30%. The two bivalent inactivated vaccine laboratory products of duck viral hepatitis were effective and reliable, providing a new method as well as a new product for DHAV prevention and control.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Neutralizing
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Ducks
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Hepatitis Virus, Duck
		                        			;
		                        		
		                        			Hepatitis, Viral, Animal
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Neutralization Tests
		                        			;
		                        		
		                        			Picornaviridae Infections
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			veterinary
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Vaccines, Inactivated
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Viral Hepatitis Vaccines
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
4.Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.
Lishan LV ; Xiaoming LI ; Genmei LIU ; Ran LI ; Qiliang LIU ; Huifang SHEN ; Wei WANG ; Chunyi XUE ; Yongchang CAO
Journal of Veterinary Science 2014;15(2):209-216
		                        		
		                        			
		                        			Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral/blood
		                        			;
		                        		
		                        			*Chickens
		                        			;
		                        		
		                        			Chimera/genetics/immunology
		                        			;
		                        		
		                        			Coronavirus Infections/prevention & control/*veterinary/virology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			*Immunity, Innate
		                        			;
		                        		
		                        			Infectious bronchitis virus/genetics/*immunology
		                        			;
		                        		
		                        			Influenza A Virus, H5N1 Subtype/genetics/immunology
		                        			;
		                        		
		                        			Injections, Intramuscular/veterinary
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Neuraminidase/genetics
		                        			;
		                        		
		                        			Poultry Diseases/*prevention & control/virology
		                        			;
		                        		
		                        			Recombinant Fusion Proteins/genetics/immunology
		                        			;
		                        		
		                        			Spike Glycoprotein, Coronavirus/genetics/*immunology
		                        			;
		                        		
		                        			Vaccines, Synthetic/administration & dosage/genetics/immunology
		                        			;
		                        		
		                        			Vaccines, Virus-Like Particle/administration & dosage/genetics/*immunology
		                        			;
		                        		
		                        			Viral Proteins/genetics
		                        			
		                        		
		                        	
5.Genotypes and serotypes of avian infectious bronchitis viruses isolated during 2009-2011 in Guangxi, China.
Li-Li QIN ; Meng LI ; Rong SUN ; Zhi-Jin WU ; Kun HE ; Mei-Lan MO ; Tian-Chao WEI ; Ping WEI
Chinese Journal of Virology 2014;30(2):162-170
		                        		
		                        			
		                        			In order to investigate the prevalence and track genetic and antigenic evolutions of infectious bronchitis virus (IBV) and their prevalence in Guangxi, China since 1985, gene amplification and sequencing and virus neutralization (VN) test on chicken embryo tracheal organ cultures were used in genotyping and serotyping of 28 IBV isolates during 2009-2011 in Guangxi. The results of N gene sequencing and comparison showed that the 28 isolates and reference strains were classified into three groups, and most isolates belonged to group Ill, while the isolates in 1985-2008 belonged to groups IV and II. The data of VN test indicated that the 28 isolates belonged to 6 serotypes; among them, 71. 4% belonged to serotypes 1, 2, and 3, and 11 (39.3%) shared the same serotype with the current vaccine strains. Given the data of our previous study, it is found that prevalent serotypes and their proportions varied in different areas of Guangxi and during different periods. These data lay a good foundation for developing an oil-emulsified inactivated polyvalent vaccine containing local dominant serotypes for the effective prevention and control of infectious bronchitis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			epidemiology
		                        			;
		                        		
		                        			Coronavirus Infections
		                        			;
		                        		
		                        			epidemiology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			veterinary
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Infectious bronchitis virus
		                        			;
		                        		
		                        			classification
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			epidemiology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			virology
		                        			
		                        		
		                        	
6.Preparation and diagnostic utility of a hemagglutination inhibition test antigen derived from the baculovirus-expressed hemagglutinin-neuraminidase protein gene of Newcastle disease virus.
Kang Seuk CHOI ; Soo Jeong KYE ; Woo Jin JEON ; Mi Ja PARK ; Saeromi KIM ; Hee Jung SEUL ; Jun Hun KWON
Journal of Veterinary Science 2013;14(3):291-297
		                        		
		                        			
		                        			A recombinant hemagglutinin-neuraminidase (rHN) protein from Newcastle disease virus (NDV) with hemagglutination (HA) activity was expressed in Spodoptera frugiperda cells using a baculovirus expression system. The rHN protein extracted from infected cells was used as an antigen in a hemagglutination inhibition (HI) test for the detection and titration of NDV-specific antibodies present in chicken sera. The rHN antigen produced high HA titers of 2(13) per 25 microL, which were similar to those of the NDV antigen produced using chicken eggs, and it remained stable without significant loss of the HA activity for at least 12 weeks at 4degrees C. The rHN-based HI assay specifically detected NDV antibodies, but not the sera of other avian pathogens, with a specificity and sensitivity of 100% and 98.0%, respectively, in known positive and negative chicken sera (n = 430). Compared with an NDV-based HI assay, the rHN-based HI assay had a relative sensitivity and specificity of 96.1% and 95.5%, respectively, when applied to field chicken sera. The HI titers of the rHN-based HI assay were highly correlated with those in an NDV-based HI assay (r = 0.927). Overall, these results indicate that rHN protein provides a useful alternative to NDV antigen in HI assays.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral/*blood
		                        			;
		                        		
		                        			Antigens, Viral/*diagnostic use/genetics/metabolism
		                        			;
		                        		
		                        			Baculoviridae/genetics
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			HN Protein/*diagnostic use/genetics/metabolism
		                        			;
		                        		
		                        			Hemagglutination Inhibition Tests/*methods/veterinary
		                        			;
		                        		
		                        			Newcastle Disease/*diagnosis/immunology/virology
		                        			;
		                        		
		                        			Newcastle disease virus/genetics/*immunology/metabolism
		                        			;
		                        		
		                        			Poultry Diseases/*diagnosis/immunology/virology
		                        			;
		                        		
		                        			Recombinant Proteins/diagnostic use/genetics/metabolism
		                        			;
		                        		
		                        			Sf9 Cells
		                        			;
		                        		
		                        			Spodoptera
		                        			
		                        		
		                        	
7.Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine.
Fang YAN ; Yujun ZHAO ; Yongting HU ; Jianyang QIU ; Wenxin LEI ; Wenhui JI ; Xuying LI ; Qian WU ; Xiumin SHI ; Zhong LI
Journal of Veterinary Science 2013;14(1):53-60
		                        		
		                        			
		                        			The protective efficacy of DNA plasmids encoding avian infectious bronchitis virus (IBV) S1, N, or M protein was investigated in chickens. Chickens were inoculated monovalently (with plasmid pVAX1-16S1, pVAX1-16M, or pVAX1-16N alone) or multivalently (combination of the three different plasmids, pVAX1-16S1/M/N). A prime-boost immunization protocol against IBV was developed. Chickens were immunized with the multivalent DNA vaccine twice and then boosted with an inactivated vaccine once. Antibody titers of the chickens immunized with pVAX1-16S1/M/N were much higher than those of the monovalent groups (p < 0.01). A protective rate up to 90% was observed in the pVAX1-16S1/M/N group. The serum antibody titers in the prime-boost birds were significantly higher than those of the multivalent DNA vaccine group (p < 0.01) but not significantly different compared to the inactivated vaccine group at 49 days of age. Additionally, the prime-boost group also showed the highest level of IBV-specific cellular proliferation compared to the monovalent groups (p < 0.01) but no significant difference was found compared to the multivalent DNA vaccine group, and the prime-boost group completely protected from followed viral challenge.
		                        		
		                        		
		                        		
		                        			Aging
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral/blood
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Coronavirus Infections/prevention & control/*veterinary/virology
		                        			;
		                        		
		                        			Immunization, Secondary/veterinary
		                        			;
		                        		
		                        			Infectious bronchitis virus/*immunology
		                        			;
		                        		
		                        			Poultry Diseases/*prevention & control/virology
		                        			;
		                        		
		                        			T-Lymphocyte Subsets/cytology/physiology
		                        			;
		                        		
		                        			Vaccines, DNA/immunology
		                        			;
		                        		
		                        			Vaccines, Inactivated/immunology
		                        			;
		                        		
		                        			Viral Vaccines/*immunology
		                        			
		                        		
		                        	
8.A review of H7 subtype avian influenza virus.
Wen-Fei ZHU ; Rong-Bao GAO ; Da-Yan WANG ; Lei YANG ; Yun ZHU ; Yue-Long SHU
Chinese Journal of Virology 2013;29(3):245-249
		                        		
		                        			
		                        			Since 2002, H7 subtype avian influenza viruses (AIVs) have caused more than 100 human infection cases in the Netherlands, Italy, Canada, the United States, and the United Kingdom, with clinical illness ranging from conjunctivitis to mild upper respiratory illness to pneumonia. On March 31st, three fatal cases caused by infection of a novel reassortant H7N9 subtype were reported in Shanghai City and Anhui Province in China. With the ability of H7 subtype to cause severe human disease and the increasing isolation of subtype H7 AIVs, we highlighted the need for continuous surveillance in both humans and animals and characterization of these viruses for the development of vaccines and anti-viral drugs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Ducks
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Influenza A virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pathogenicity
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Influenza Vaccines
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Influenza in Birds
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Influenza, Human
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Turkeys
		                        			
		                        		
		                        	
9.Evaluation of modified vaccinia virus Ankara expressing VP2 protein of infectious bursal disease virus as an immunogen in chickens.
Flavia Adriana ZANETTI ; Maria Paula Del Medico ZAJAC ; Oscar Alberto TABOGA ; Gabriela CALAMANTE
Journal of Veterinary Science 2012;13(2):199-201
		                        		
		                        			
		                        			A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral
		                        			;
		                        		
		                        			Birnaviridae Infections/prevention & control/*veterinary
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Fibroblasts/metabolism
		                        			;
		                        		
		                        			Infectious bursal disease virus/*immunology
		                        			;
		                        		
		                        			Poultry Diseases/*prevention & control/virology
		                        			;
		                        		
		                        			Specific Pathogen-Free Organisms
		                        			;
		                        		
		                        			Vaccinia virus/*genetics/immunology/metabolism
		                        			;
		                        		
		                        			Viral Structural Proteins/genetics/*immunology/metabolism
		                        			;
		                        		
		                        			Viral Vaccines/*immunology
		                        			
		                        		
		                        	
10.Development and characterization of a potential diagnostic monoclonal antibody against capsid protein VP1 of the chicken anemia virus.
Yi Yang LIEN ; Chi Hung HUANG ; Fang Chun SUN ; Shyang Chwen SHEU ; Tsung Chi LU ; Meng Shiunn LEE ; Shu Chin HSUEH ; Hsi Jien CHEN ; Meng Shiou LEE
Journal of Veterinary Science 2012;13(1):73-79
		                        		
		                        			
		                        			Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. In this study, a potential diagnostic monoclonal antibody against the CAV VP1 protein was developed which can precisely recognize the CAV antigen for diagnostic and virus recovery purposes. The VP1 gene of CAV encoding the N-terminus-deleted VP1 protein, VP1Nd129, was cloned into an Escherichia (E.) coli expression vector. After isopropyl-beta-D-thiogalactopyronoside induction, VP1Nd129 protein was shown to be successfully expressed in the E. coli. By performing an enzyme-linked immunoabsorbent assay using two coating antigens, purified VP1Nd129 and CAV-infected liver tissue lysate, E3 monoclonal antibody (mAb) was found to have higher reactivity against VP1 protein than the other positive clones according to the result of limiting dilution method from 64 clones. Using immunohistochemistry, the presence of the VP1-specific mAb, E3, was confirmed using CAV-infected liver and thymus tissues as positive-infected samples. Additionally, CAV particle purification was also performed using an immunoaffinity column containing E3 mAb. The monoclonal E3 mAb developed in this study will not only be very useful for detecting CAV infection and performing histopathology studies of infected chickens, but may also be used to purify CAV particles in the future.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Monoclonal/biosynthesis/genetics/*immunology
		                        			;
		                        		
		                        			Antigens, Viral/analysis
		                        			;
		                        		
		                        			Capsid Proteins/genetics/*immunology
		                        			;
		                        		
		                        			Chicken anemia virus/genetics/*immunology
		                        			;
		                        		
		                        			*Chickens
		                        			;
		                        		
		                        			Circoviridae Infections/blood/immunology/*veterinary/virology
		                        			;
		                        		
		                        			Escherichia coli/genetics
		                        			;
		                        		
		                        			Immunohistochemistry/veterinary
		                        			;
		                        		
		                        			Liver/virology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Microscopy, Fluorescence/veterinary
		                        			;
		                        		
		                        			Poultry Diseases/blood/immunology/*virology
		                        			;
		                        		
		                        			Specific Pathogen-Free Organisms
		                        			;
		                        		
		                        			Thymus Gland/virology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail