1.Pathogenicity of an FAdV-4 isolate to chickens and its genomic analysis.
Kai-Kun MO ; Chen-Fei LYU ; Shang-Shang CAO ; Xia LI ; Gang XING ; Yan YAN ; Xiao-Juan ZHENG ; Min LIAO ; Ji-Yong ZHOU
Journal of Zhejiang University. Science. B 2019;20(9):740-752
Fowl adenovirus serotype 4 (FAdV-4) strain SD1511 was isolated from chickens with severe inclusion body hepatitis and hydropericardium syndrome in Shandong Province, China. The isolate was cultured in primary chicken embryo kidney cells. A study of pathogenicity indicated that SD1511 readily infected 7-35-d-old chickens by intramuscular injection and intranasal and oral routes, causing 50%-100% mortality. The 35-d-old chickens suffered more severe infection than 7- and 21-d-old chickens with mortality highest in the intramuscular injection group. The serum from surviving chickens showed potent viral neutralizing capability. The complete genome of SD1511 was sequenced and analyzed. The strain was found to belong to the FAdV-4 cluster with more than 99% identity with the virulent FAdV-4 strains isolated in China in recent years except for some distinct variations, including deletions of open reading frame 27 (ORF27), ORF48, and part of ORF19. Our findings suggest that SD1511 might be used as a prototype strain for the study of pathogenesis and vaccine development.
Animals
;
Antibodies, Neutralizing
;
Aviadenovirus/pathogenicity*
;
Cell Line
;
Chick Embryo/virology*
;
Chickens/virology*
;
China
;
Gene Deletion
;
Genetic Variation
;
Genome
;
Genome, Viral
;
Genomics
;
Kidney/virology*
;
Liver/virology*
;
Open Reading Frames
;
Poultry Diseases/virology*
;
Serogroup
;
Viral Load
;
Virulence
;
Virus Diseases/virology*
2.Serosurvey of Avian metapneumovirus, Orithobacterium rhinotracheale, and Chlamydia psittaci and Their Potential Association with Avian Airsacculitis.
Zong Hui ZUO ; Tian Yuan ZHANG ; Yong Xia GUO ; Jun CHU ; Guang Gang QU ; Li Zhong MIAO ; Zhi Qiang SHEN ; Cheng HE
Biomedical and Environmental Sciences 2018;31(5):403-406
Seasonal outbreaks of airsacculitis in China's poultry cause great economic losses annually. This study tried to unveil the potential role of Avian metapneumovirus (AMPV), Ornithobacterium rhinotracheale (ORT) and Chlamydia psittaci (CPS) in avian airsacculitis. A serological investigation of 673 breeder chickens and a case-controlled study of 430 birds were undertaken. Results showed that infection with AMPV, ORT, and CPS was highly associated with the disease. The correlation between AMPV and CPS were positively robust in both layers and broilers. Finally, we determined the co-infection with AMPV, ORT, and CPS was prevalent in the sampled poultry farms suffering from respiratory diseases and the outbreak of airsacculitis was closely related to simultaneous exposure to all three agents.
Air Sacs
;
microbiology
;
pathology
;
Animals
;
Antibodies, Bacterial
;
blood
;
Antibodies, Viral
;
blood
;
Case-Control Studies
;
Chickens
;
Chlamydia
;
Chlamydia Infections
;
microbiology
;
pathology
;
veterinary
;
Coinfection
;
Flavobacteriaceae Infections
;
microbiology
;
pathology
;
veterinary
;
Humans
;
Metapneumovirus
;
Ornithobacterium
;
Paramyxoviridae Infections
;
pathology
;
veterinary
;
virology
;
Poultry Diseases
;
microbiology
;
pathology
;
virology
;
Respiratory Tract Diseases
;
microbiology
;
veterinary
;
virology
;
Seroepidemiologic Studies
3.Viscerotropic velogenic Newcastle disease virus replication in feathers of infected chickens.
Dong Hun LEE ; Jung Hoon KWON ; Jin Yong NOH ; Jae Keun PARK ; Seong Su YUK ; Tseren Ochir ERDENE-OCHIR ; Sang Soep NAHM ; Yong Kuk KWON ; Sang Won LEE ; Chang Seon SONG
Journal of Veterinary Science 2016;17(1):115-117
Newcastle disease viruses (NDVs) cause systemic diseases in chickens with high mortality. However, little is known about persistence of NDVs in contaminated tissues from infected birds. In this study, we examined viral replication in the feather pulp of chickens inoculated with viscerotropic velogenic NDV (vvNDV) genotype VII. Reverse transcription real-time PCR and immunohistochemistry were used to investigate viral persistence in the samples. vvNDV was detected in the oropharynx and cloaca and viral antigens were detected in the feathers, suggesting that feathers act as sources of viral transmission.
Animals
;
Antigens, Viral/analysis
;
Chickens
;
Cloaca/virology
;
Feathers/*virology
;
Microbial Viability
;
Newcastle Disease/transmission/*virology
;
Newcastle disease virus/isolation & purification/*physiology
;
Oropharynx/virology
;
Poultry Diseases/transmission/*virology
;
Virus Replication/*physiology
4.The Isolation and Identification of Infectious Bronchitis Virus PTFY Strain in Muscovy Ducks.
Xiaoping WU ; Shulei PAN ; Wuduo ZHOU ; Yijiang WU ; Yifan HUANG ; Baocheng WU
Chinese Journal of Virology 2016;32(2):203-209
In July 2009, some farms of breeding Muscovy ducks on the peak of egg laying suffered the decrease of hatching rate and the quality of the eggs showing low mortality and no evident respiratory symptoms. The swelling and congestive ovary was visible after autopsy. This study was brought out for the diagnosis of these cases. The virus was isolated and identified by the methods of virus culture in chicken embryo, physical and chemical properties test, hemagglutinin test, NDV (Newcastle diseases Virus) interference test, electron microscope observation, pathogenicity test and the gene sequence analysis. The results indicated the virus showed the characters of inducing dwarf embryo after inocubation, the sensibility to lipid solvent and the hemagglutination capacity after pancreatic enzyme treatment, the typical morphology of coronavirus, the interference to NDV replication and the homology among 84.7% - 99% of the particial N gene sequences to the reference IBV (Avian infectious bronchitis virus) strains. The strain was identified as IBV isolate and this study confirmed the pathogenicity of IBV to Muscovy ducks.
Amino Acid Sequence
;
Animals
;
Chick Embryo
;
Coronavirus Infections
;
veterinary
;
virology
;
Ducks
;
virology
;
Female
;
Infectious bronchitis virus
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
virology
;
Sequence Alignment
5.Effect of Low Dose of Chicken Infectious Anemia Virus in Attenuated Vaccine on SPF Chicken Body Weight and Vaccine Immune Antibody.
Lichun FANG ; Xiaohan LI ; Zhihao REN ; Yang LI ; Yixin WANG ; Zhizhong CUI ; Shuang CHANG ; Peng ZHAO
Chinese Journal of Virology 2016;32(2):190-194
In order to observe the effect of the immune and weight of chickens after use the attenuated vaccine with low dose of chicken infectious anemia virus (CIAV). In this study, the effects of low dose of CIAV on the weight of SPF chickens and NDV antibody production were observed by simulated experiments. The results showed that 10 EID50 and 5 EID50 CIAV per plume attenuated NDV vaccines were used to cause the weight loss of SPF chickens. Compared with the use of the non contaminated vaccine group, it has significant difference. And NDV antibody levels compared with the use of the non contaminated groups also decreased after use the vaccine with two doses of CIAV contaminated. It has significant difference. A certain proportion of CIAV antibody positive was detected at the beginning of the second week after use the NDV vaccine with two doses of CIAV contaminated. The detection of a high proportion of CIAV nucleic acid was detected in the first week after the use of a contaminated vaccine. The results of the study demonstrate the effects of CIAV pollution on the production and immune function of SPF chickens, and it is suggested that increasing the detection of viral nucleic acid can help save time and improve the detection rate in the detection of exogenous virus contamination by SPF chicken test method.
Animals
;
Antibodies, Viral
;
immunology
;
Chicken anemia virus
;
genetics
;
immunology
;
physiology
;
Chickens
;
Circoviridae Infections
;
immunology
;
veterinary
;
virology
;
Poultry Diseases
;
immunology
;
virology
;
Specific Pathogen-Free Organisms
;
Vaccines, Attenuated
;
administration & dosage
;
genetics
;
immunology
6.Sequencing and Serologic Identification of S1 Genes of Infectious Bronchitis Viruses Isolated during 2012-2013 in Guangxi Province, China.
Lihua ZHANG ; Cuilan WU ; Zhipeng ZHANG ; Yining HE ; Heming LI ; Lili QIN ; Tianchao WEI ; Meilan MO ; Ping WEI
Chinese Journal of Virology 2016;32(1):62-69
We wished to ascertain the prevalence as well as the genetic and antigenic variation of infectious bronchitis viruses (IBVs) circulating in the Guangxi Province of China in recent years. The S1 gene of 15 IBV field isolates during 2012-2013 underwent analyses in terms of the similarity of amino-acid sequences, creation of phylogenetic trees, recombination, and serologic identification. Similarities in amino-acid sequences among the 15 isolates of the S1 gene were 54.3%-99.6%, and 43.3%-99.3% among 15 isolates and reference strains. Compared with the vaccine strain H120, except for GX-YL130025, the other 14 isolates showed a lower similarity of amino-acid sequences of the S1 gene (65.1-81.4%). Phylogenetic analyses of the S1 gene suggested that 15 IBV isolates were classified into eight genotypes, with the predominant genotype being new-type II. Recombination analyses demonstrated that the S1 gene of the GX-NN130048 isolate originated from recombination events between vaccine strain 4/91 and a LX4-like isolate. Serotyping results suggested that seven serotypes prevailed during 2012-2013 in Guangxi Province, and that only one isolate was consistent with the vaccine strain H120 in serotype (which has been used widely in recent years). The serotype of recombinant isolate GX-NN130048 was different from those of its parent strains. These results suggested that not only the genotype, but also the serotype of IBV field isolates in Guangxi Province had distinct variations, and that increasing numbers of genotypes and serotypes are in circulation. We showed that recombination events can lead to the emergence of new serotypes. Our study provides new evidence for understanding of the molecular mechanisms of IBV variations, and the development of new vaccines against IBVs.
Animals
;
Antibodies, Viral
;
blood
;
Chickens
;
China
;
Coronavirus Infections
;
blood
;
veterinary
;
virology
;
Genetic Variation
;
Genotype
;
Infectious bronchitis virus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
blood
;
virology
;
Sequence Homology, Amino Acid
;
Spike Glycoprotein, Coronavirus
;
chemistry
;
genetics
;
immunology
7.Cross-species Transmission of Avian Leukosis Virus Subgroup J.
Yanwei SHEN ; Menglian HE ; Ji ZHANG ; Manda ZHAO ; Guihua WANG ; Ziqiang CHENG
Chinese Journal of Virology 2016;32(1):46-55
Avian leukosis virus subgroup J (ALV-J) is an avian retrovirus that can induce myelocytomas. A high-frequency mutation in gene envelope endows ALV-J with the potential for cross-species transmission. We wished to ascertain if the ALV-J can spread across species under selection pressure in susceptible and resistant hosts. First, we inoculated (in turn) two susceptible host birds (specific pathogen-free (SPF) chickens and turkeys). Then, we inoculated three resistant hosts (pheasants, quails and ducks) to detect the viral shedding, pathologic changes, and genetic evolution of different isolates. We found that pheasants and quails were infected under the selective pressure that accumulates stepwise in different hosts, and that ducks were not infected. Infection rates for SPF chickens and turkeys were 100% (16/16), whereas those for pheasants and quails were 37.5% (6/16) and 11.1% (3/27). Infected hosts showed immune tolerance, and inflammation and tissue damage could be seen in the liver, spleen, kidneys and cardiovascular system. Non-synonymous mutation and synonymous ratio (NS/S) analyses revealed the NS/S in hypervariable region (hr) 2 of pheasants and quails was 2.5. That finding suggested that mutation of isolates in pheasants and quails was induced by selective pressure from the resistant host, and that the hr2 region is a critical domain in cross-species transmission of ALV-J. Sequencing showed that ALV-J isolates from turkeys, pheasants and quails had moved away from the original virus, and were closer to the ALV-J prototype strain HPRS-103. However, the HPRS-103 strain cannot infect pheasants and quails, so further studies are needed.
Amino Acid Sequence
;
Animals
;
Avian Leukosis
;
transmission
;
virology
;
Avian Leukosis Virus
;
classification
;
genetics
;
physiology
;
Chickens
;
Ducks
;
virology
;
Galliformes
;
virology
;
Host Specificity
;
Molecular Sequence Data
;
Poultry Diseases
;
transmission
;
virology
;
Quail
;
virology
;
Sequence Alignment
;
Turkeys
;
virology
;
Viral Envelope Proteins
;
chemistry
;
genetics
;
metabolism
8.Lentivirus Delivery of the Short Hairpin RNA Targeting NDV P Gene Inhibits Production of the Newcastle Disease Virus in Chicken Embryo Fibroblasts and Chicken Embryos.
Shaohua YANG ; Chuantian XU ; Lin ZHANG ; Yanyan HUANG ; Qinghua HUANG ; Beixia HU ; Xiumei ZHANG
Chinese Journal of Virology 2016;32(1):39-45
Small interfering ribonucleic acid (siRNA)-induced RNA degradation can inhibit viral infection, and has been investigated extensively for its efficacy as antiviral therapy. The potential therapeutic role of lentiviral-mediated short hairpin ribonucleic acid (shRNA) to Newcastle disease virus (NDV) replication in vivo has been explored less often. We constructed two recombinant lentiviral vectors containing shRNA against the phosphoprotein (P) of the NDV, RNAi-341 and RNAi-671. Recombinant shRNA lentivirus vectors were co-transfected into 293T cells, along with helper plasmids, to package the recombinant shRNA lentivirus. Lentivirus-based shRNAs were titrated and transduced into NDV-susceptible chicken embryo fibroblasts (CEFs) and chick embryos. Antiviral activity against the NDV strain was evaluated by virus titration and real-time reverse transcription-polymerase chain reaction. RNAi-341 and RNAi-671 strongly suppressed transient expression of a FLAG-tagged P fusion protein in 293T cells. RNAi-341 and RNAi-671 NDV reduced virus titers by 66.6-fold and 30.6-fold, respectively, in CEFs 16 h after infection. RNAi-341 and RNAi-671 reduced virus titers in specific pathogen-free chick embryos by 99% and 98%, respectively, 48 h after infection. Both shRNAs inhibited accumulation of not only P-gene mRNA, but also nucleocapsid, M-, F-, HN-, and L-gene mRNA. RNAi-341 silenced P-gene mRNA more potently than RNAi-671. These results suggest that shRNAs silencing the P gene had substantial antiviral properties and inhibited NDV replication in CEFs and chick embryos.
Animals
;
Chick Embryo
;
Chickens
;
Down-Regulation
;
Fibroblasts
;
virology
;
Gene Targeting
;
Lentivirus
;
genetics
;
metabolism
;
Newcastle Disease
;
virology
;
Newcastle disease virus
;
genetics
;
physiology
;
Phosphoproteins
;
genetics
;
metabolism
;
Poultry Diseases
;
virology
;
RNA Interference
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Viral Proteins
;
genetics
;
metabolism
;
Virus Replication
9.Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013.
Han Qin SHEN ; Zhuan Qiang YAN ; Fan Gui ZENG ; Chang Tao LIAO ; Qing Feng ZHOU ; Jian Ping QIN ; Qing Mei XIE ; Ying Zuo BI ; Feng CHEN
Journal of Veterinary Science 2015;16(3):317-324
As part of our ongoing influenza surveillance program in South China, 19 field strains of H9N2 subtype avian influenza viruses (AIVs) were isolated from dead or diseased chicken flocks in Guangdong province, South China, between 2012 and 2013. Hemagglutinin (HA) genes of these strains were sequenced and analyzed and phylogenic analysis showed that 12 of the 19 isolates belonged to the lineage h9.4.2.5, while the other seven belonged to h9.4.2.6. Specifically, we found that all of the viruses isolated in 2013 belonged to lineage h9.4.2.5. The lineage h9.4.2.5 viruses contained a PSRSSRdownward arrowGLF motif at HA cleavage site, while the lineage h9.4.2.6 viruses contained a PARSSRdownward arrowGLF at the same position. Most of the isolates in lineage h9.4.2.5 lost one potential glycosylation site at residues 200-202, and had an additional one at residues 295-297 in HA1. Notably, 19 isolates had an amino acid exchange (Q226L) in the receptor binding site, which indicated that the viruses had potential affinity of binding to human like receptor. The present study shows the importance of continuing surveillance of new H9N2 strains to better prepare for the next epidemic or pandemic outbreak of H9N2 AIV infections in chicken flocks.
Animals
;
*Chickens
;
China
;
Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics/metabolism
;
Influenza A Virus, H9N2 Subtype/*genetics/metabolism
;
Influenza in Birds/virology
;
Phylogeny
;
Poultry Diseases/*virology
;
Sequence Analysis, RNA/veterinary
10.Pathogenicity of H5N8 virus in chickens from Korea in 2014.
Byung Min SONG ; Hyun Mi KANG ; Eun Kyoung LEE ; Jipseol JEONG ; Yeojin KANG ; Hee Soo LEE ; Youn Jeong LEE
Journal of Veterinary Science 2015;16(2):237-240
In 2014, two genetically distinct H5N8 highly pathogenic avian influenza (HPAI) viruses were isolated from poultry and wild birds in Korea. The intravenous pathogenicity indices for the two representative viruses were both 3.0. Mortality of chickens intranasally inoculated with the two H5N8 viruses was 100% with a mean death times of 2.5 and 4.5 days. Mortality rates of the contact groups for the two H5N8 viruses were 33.3% and 66.6%. Our study showed that transmissibility of the novel H5N8 viruses was different from that of previously identified H5N1 HPAI viruses, possibly due to genetic changes.
Animals
;
Chickens
;
Disease Outbreaks/veterinary
;
Influenza A virus/*pathogenicity/*physiology
;
Influenza in Birds/*mortality/transmission/virology
;
Poultry Diseases/*mortality/transmission/virology
;
Republic of Korea/epidemiology
;
Virulence

Result Analysis
Print
Save
E-mail