1.Anti -epileptic effect of 2 -deoxy -D -glucose by activation of miR -194/KATP signaling pathway.
Journal of Central South University(Medical Sciences) 2022;47(8):1099-1107
OBJECTIVES:
Epilepsy is a syndrome of central nervous system dysfunction caused by many reasons, which is mainly characterized by abnormal discharge of neurons in the brain. Therefore, finding new targets for epilepsy therapy has always been the focus and hotspot in neurological research field. Studies have found that 2-deoxy-D-glucose (2-DG) exerts anti-epileptic effect by up-regulation of KATP channel subunit Kir6.1, Kir6.2 mRNA and protein. By using the database of TargetScan and miRBase to perform complementary pairing analysis on the sequences of miRNA and related target genes, it predicted that miR-194 might be the upstream signaling molecule of KATP channel. This study aims to explore the mechanism by which 2-DG exerts its anti-epileptic effect by regulating KATP channel subunits Kir6.1 and Kir6.2 via miR-194.
METHODS:
A magnesium-free epilepsy model was established and randomly divided into a control group, an epilepsy group (EP group), an EP+2-DG group, and miR-194 groups (including EP+miR-194 mimic, EP+miR-194 mimic+2-DG, EP+miR-194 mimic control, EP+miR-194 inhibitor, EP+miR-194 inhibitor+2-DG, and EP+miR-194 inhibitor control groups). The 2-DG was used to intervene miR-194 mimics, patch-clamp method was used to detect the spontaneous recurrent epileptiform discharges, real-time PCR was used to detect neuronal miR-194, Kir6.1, and Kir6.2 expressions, and the protein levels of Kir6.1 and Kir6.2were detected by Western blotting.
RESULTS:
Compared with the control group, there was no significant difference in the amplitude of spontaneous discharge potential in the EP group (P>0.05), but the frequency of spontaneous discharge was increased (P<0.05). Compared with the EP group, the frequency of spontaneous discharge was decreased (P<0.05). Compared with the EP+miR-194 mimic control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 mimic group were down-regulated (all P<0.05). Compared with the EP+miR-194 inhibitor control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor group were up-regulated (all P<0.05). After pretreatment with miR-194 mimics, the mRNA and protein expression levels of KATP channel subunits Kir6.1 and Kir6.2 were decreased (all P<0.05). Compared with the EP+2-DG group, the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 mimic+2-DG group were down-regulated (all P<0.05) and the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor+2-DG group were up-regulated (all P<0.05).
CONCLUSIONS
The 2-DG might play an anti-epilepsy effect by up-regulating KATP channel subunits Kir6.1 and Kir6.2via miR-194.
Adenosine Triphosphate
;
Anticonvulsants
;
Deoxyglucose/pharmacology*
;
Epilepsy/genetics*
;
Glucose
;
Humans
;
MicroRNAs/genetics*
;
Potassium Channels, Inwardly Rectifying/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
2.Downregulation of inwardly rectifying potassium channel 5.1 expression in C57BL/6J cochlear lateral wall.
Chun-Chen PAN ; Han-Qi CHU ; Yan-Bing LAI ; Yan-Bo SUN ; Zhi-Hui DU ; Yun LIU ; Jin CHEN ; Ting TONG ; Qing-Guo CHEN ; Liang-Qiang ZHOU ; Dan BING ; Yan-Ling TAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):406-409
Age-related hearing loss (AHL) is one of the most common sensory disorders among elderly persons. The inwardly rectifying potassium channel 5.1 (Kir5.1) plays a vital role in regulating cochlear K(+) circulation which is necessary for normal hearing. The distribution of Kir5.1 in C57BL/6J mice cochleae, and the relationship between the expression of Kir5.1 and the etiology of AHL were investigated. Forty C57BL/6J mice were randomly divided into four groups at 4, 12, 24 and 52 weeks of age respectively. The location of Kir5.1 was detected by immunofluorescence technique. The mRNA and protein expression of Kir5.1 was evaluated in mice cochleae using real-time polymerase-chain reactions (RT-PCR) and Western blotting respectively. Kir5.1 was detected in the type II and IV fibrocytes of the spiral ligament in the cochlear lateral wall of C57BL/6J mice. The expression levels of Kir5.1 mRNA and protein in the cochleae of aging C57BL/6J mice were down-regulated. It was suggested that the age-related decreased expression of Kir5.1 in the lateral wall of C57BL/6J mice was associated with hearing loss. Our results indicated that Kir5.1 may play an important role in the pathogenesis of AHL.
Aging
;
genetics
;
metabolism
;
Animals
;
Cations, Monovalent
;
Fluorescent Antibody Technique
;
Gene Expression Regulation
;
Ion Transport
;
Mice
;
Mice, Inbred C57BL
;
Microtomy
;
Potassium
;
metabolism
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
metabolism
;
Presbycusis
;
genetics
;
metabolism
;
physiopathology
;
RNA, Messenger
;
genetics
;
metabolism
;
Spiral Ligament of Cochlea
;
metabolism
;
physiopathology
;
ultrastructure
3.EAST/SeSAME syndrome and functional expression of inward rectifier potassium channel Kir4.1 in the inner ear.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(14):1318-1322
Inwardly rectifying potassium (Kir) channels exhibit an asymmetrical conductance at hyperpolarization (high conductance) compared to depolarization (low conductance). The KCNJ10 gene which encodes an inwardly rectifying K+ channel Kir4.1 subunit plays an essential role in the inner ear and hearing. Mutations or deficiency of KCNJ10 can cause hearing loss with epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) or SeSAME (seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance) syndromes. In this review, we mainly focus on the expression and function of Kir4.1 channels in the inner ear and mutation-induced EAST/SeSAME syndromes to provide insight for understanding the pathogenesis of deafness induced by KCNJ10 deficiency.
Deafness
;
genetics
;
metabolism
;
Ear, Inner
;
metabolism
;
Hearing Loss, Sensorineural
;
genetics
;
metabolism
;
Humans
;
Intellectual Disability
;
genetics
;
metabolism
;
Mutation
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
metabolism
;
Seizures
;
genetics
;
metabolism
4.Expression of GIRK4 gene in kidney tissues of obese rat.
Yong-an KANG ; Yan-rong HU ; Li GAO ; Hai YANG ; Nan-fang LI
Acta Academiae Medicinae Sinicae 2013;35(1):36-39
OBJECTIVETo investigate the expression of GIRK4 gene in the kidney tissues of obese rats.
METHODSObese rat models were established using diet-induced method. The GIRK4 protein expression in kidney tissues was determined in 20 obese rats and 10 normal rats using Western blot analysis.
RESULTSThe relative expression level of GIRK4 protein in the kidney tissues of obese rat (1.75±0.42) was significantly lower than that in normal rats (3.37±0.68, P<0.05).
CONCLUSIONGIRK4 has a low protein expression in the kidney tissues of obese rat.
Animals ; Female ; Gene Expression ; Kidney ; metabolism ; Male ; Obesity ; genetics ; metabolism ; Potassium Channels, Inwardly Rectifying ; genetics ; metabolism ; Rats
5.Relationship between the G protein gated inward rectifier potassium channel 4 gene polymorphism and dyslipidemia of Uyghur residents.
Dan SHAO ; Nan-fang LI ; Yan-rong HU ; De-lian ZHANG
Acta Academiae Medicinae Sinicae 2013;35(6):611-617
OBJECTIVETo investigate the relationship between the G protein-gated inward rectifier K+ channel subunit 4 (GIRK4) gene polymorphism and the dyslipidemia among Uyghur residents in Xinjiang.
METHODSThe polymorphisms of rs2604204, rs4937391, rs6590357, and rs11221497 among the Uyghur residents were genotyped using Taqman polymerase chain reaction (PCR). Lipid levels were measured by conventional methods and were analyzed.
RESULTSIn the less-than-50-years population, the genotype distributions of the rs6590357 was statistically significant different in subjects with or without abnormal triglycerides (P=0.005). Aslo, the the genotype distributions of the rs11221497 also significantly differed in subjects with normal compared or abnormal TG (P=0.011). Logistic regression analysis suggested that rs6590357 still had positive association with TG abnormalities in subjects under 50 years (P=0.014). rs11221497 also had positive association with TC abnormalities. The TG levels of CT+TT genotypes were significantly higher than the CC group (P=0.006). Haplotype analysis found that the differences of H3 haplotype frequencies between the TG abnormal and normal groups were statistically significant (P=0.007).
CONCLUSIONThe polymorphisms of rs11221497 and rs6590357 of GIRK4 gene may play a role in the development of dyslipidemia in Uygur population.
China ; epidemiology ; Dyslipidemias ; epidemiology ; metabolism ; Genotype ; Humans ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide ; Potassium Channels, Inwardly Rectifying ; genetics ; Triglycerides
6.Expression of Kir2.1, SCN5a and SCN1b channel genes in mouse cardiomyocytes with various electric properties: patch clamp combined with single cell RT-PCR study.
Hong-Yan LUO ; Hua-Min LIANG ; Xin-Wu HU ; Ming TANG
Acta Physiologica Sinica 2012;64(1):82-86
This study is to explore a new method of investigating molecular basis for electrophysiological properties of early fetal cardiomyocytes. Single embryonic cardiomyocytes of mouse early developmental heart (E10.5) were obtained by a collagenase B digestion approach. After recording spontaneous action potential using whole cell patch clamp technique, the single cell was picked by a glass micropipette, followed by a standard RT-PCR to explore the expression levels of several ion channel genes. Three phenotypes of cardiomyocytes were demonstrated with distinct properties: ventricular-like, atrial-like, and pacemaker-like action potentials. Ventricular-like and atrial-like cells were characterized with much negative maximum diastolic potential (MDP) and a higher V(max) (maximum velocity of depolarization) compared to pacemaker-like cells. MDP of ventricular-like cells was the most negative. In parallel, stronger expression of SCN5a, SCN1b and Kir2.1 were observed in ventricular-like and atrial-like cells compared to that of pacemaker-like cells, where Kir2.1 in ventricular-like cells was the most abundant. Cardiomyocytes with distinct electrophysiological properties had distinct gene expression pattern. Single cell RT-PCR combined with patch clamp technique could serve as a precise detector to analyze the molecular basis of the special electrophysiological characteristics of cardiomyocytes.
Animals
;
Electrophysiological Phenomena
;
Female
;
Fetus
;
Male
;
Mice
;
Myocytes, Cardiac
;
metabolism
;
physiology
;
NAV1.5 Voltage-Gated Sodium Channel
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Voltage-Gated Sodium Channel beta-1 Subunit
;
genetics
;
metabolism
7.K(ATP) channel action in vascular tone regulation: from genetics to diseases.
Wei-Wei SHI ; Yang YANG ; Yun SHI ; Chun JIANG
Acta Physiologica Sinica 2012;64(1):1-13
ATP-sensitive potassium (K(ATP)) channels are widely distributed in vasculatures, and play an important role in the vascular tone regulation. The K(ATP) channels consist of 4 pore-forming inward rectifier K(+) channel (Kir) subunits and 4 regulatory sulfonylurea receptors (SUR). The major vascular isoform of K(ATP) channels is composed of Kir6.1/SUR2B, although low levels of other subunits are also present in vascular beds. The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function. The Kir6.1/SUR2B channel is regulated by intracellular ATP and ADP. The channel is a common target of several vasodilators and vasoconstrictors. Endogenous vasopressors such as arginine vasopressin and α-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the K(ATP) channels, while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase K(ATP) channel activity by activating the adenylate cyclase-cAMP-protein kinase A (PKA) pathway. PKC phosphorylates a cluster of 4 serine residues at C-terminus of Kir6.1, whereas PKA acts on Ser1387 in the nucleotide binding domain 2 of SUR2B. The Kir6.1/SUR2B channel is also inhibited by oxidants including reactive oxygen species allowing vascular regulation in oxidative stress. The molecular basis underlying such a channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues, especially Cys176, in Kir6.1. Furthermore, the channel activity is augmented in endotoxemia or septic shock, as a result of the upregulation of Kir6.1/SUR2B expression. Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by lipopolysaccharides and perhaps other toll-like receptor ligands as well. In this review, we summarize the vascular K(ATP) channel regulation under physiological and pathophysiological conditions, and discuss the importance of K(ATP) channel as a potentially useful target in the treatment and prevention of cardiovascular diseases.
ATP-Binding Cassette Transporters
;
genetics
;
physiology
;
Animals
;
Endotoxemia
;
metabolism
;
physiopathology
;
Humans
;
KATP Channels
;
genetics
;
physiology
;
Mice
;
Mice, Transgenic
;
Muscle, Smooth, Vascular
;
metabolism
;
physiology
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
physiology
;
Receptors, Drug
;
genetics
;
physiology
;
Shock, Septic
;
metabolism
;
physiopathology
;
Sulfonylurea Receptors
;
Vasoconstriction
;
physiology
;
Vasodilation
;
physiology
;
Vasomotor System
;
physiology
8.Three cases of permanent neonatal diabetes mellitus: genotypes and management outcome.
Singapore medical journal 2012;53(7):e142-4
Neonatal diabetes mellitus (DM) is defined as insulin-requiring DM in the first six months of life. Unlike type 1 DM, it is a monogenic disorder resulting from a de novo mutation in the genes involved in the development of the pancreas, β-cell mass or secretory function. The majority of neonatal DM cases are caused by a heterozygous activating mutation in the KCNJ11 or ABCC8 genes that encode the Kir6.2 and SUR1 protein subunits, respectively, in the KATP channel. Sulphonylurea, a KATP channel inhibitor, can restore insulin secretion, hence offering an attractive alternative to insulin therapy. We report three cases of neonatal DM and their genetic mutations. Two patients were successfully switched over to sulphonylurea monotherapy with resultant improvement in the quality of life and a more stable blood glucose profile. Patients with neonatal DM should undergo genetic evaluation. For patients with KCNJ11 and ABCC8 gene mutation, oral sulphonylurea should be considered.
ATP-Binding Cassette Transporters
;
genetics
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus
;
genetics
;
therapy
;
Female
;
Genotype
;
Heterozygote
;
Humans
;
Infant
;
Infant, Newborn
;
Male
;
Models, Biological
;
Models, Genetic
;
Molecular Biology
;
Mutation
;
Pancreas
;
physiology
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
Quality of Life
;
Receptors, Drug
;
genetics
;
Sulfonylurea Compounds
;
therapeutic use
;
Sulfonylurea Receptors
9.Kaiyuqingre formula improves insulin secretion via regulating uncoupling protein-2 and KATP channel.
Xiao-lin TONG ; Jun SONG ; Lin-hua ZHAO ; Hang-yu JI
Chinese Medical Journal 2011;124(17):2746-2750
BACKGROUNDType 2 diabetes mellitus (T2DM) results from the complex association of insulin resistance and pancreatic β-cell failure. Recent studies have shown that patients diagnosed with T2DM present with a significant decrease in β-cell function, which can be further compromised during the progression of the disease. Several mechanisms have been shown to play a role in this process such as glucotoxicity and lipotoxicity, which contribute to accelerating insulin secretion. In this regard, Chinese medicine has a certain advantage. This experiment was performed to observe the effect of a Chinese medicine named Kaiyuqingre formula (KYQRF) on β-cell function and its mechanisms of action therein.
METHODSHigh glucose was used to set up a model of β-cell function failure. At the same time, medicated serum of KYQRF with different doses were administered to the cells. Rosiglitazone was taken as a control to observe the changes in insulin secretion, ATP-sensitive K(+) channels (K(ATP) channel) and uncoupling protein-2 (UCP-2) in each group.
RESULTSKYQRF had some effects on the insulin secretion. In a low glucose environment, no effective change in insulin secretion was observed (P > 0.05). However, insulin levels increased significantly when INS-1 cells were exposed to a high glucose environment (P < 0.05). KYQRF could also enhance cell viability (P < 0.05) in an effect similar to rosiglitazone. Although KYQRF had no effect on inwardly rectifying potassium channels (Kir6.2) (P > 0.05), it could decrease the overexpression of both UCP-2 and sulfonylurea receptor 1 (P < 0.05).
CONCLUSIONKYQRF can protect islet function by decreasing UCP-2 and sulfonylurea receptor 1.
ATP-Binding Cassette Transporters ; genetics ; Animals ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Glucose ; pharmacology ; Insulin ; secretion ; Insulin-Secreting Cells ; cytology ; drug effects ; metabolism ; Ion Channels ; genetics ; Male ; Mitochondrial Proteins ; genetics ; Potassium Channels, Inwardly Rectifying ; genetics ; Rats ; Rats, Sprague-Dawley ; Receptors, Drug ; genetics ; Sulfonylurea Receptors ; Thiazolidinediones ; pharmacology ; Uncoupling Protein 2
10.Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture.
Dong Hyeon LEE ; In Deok KONG ; Joong Woo LEE ; Kyu Sang PARK
Yonsei Medical Journal 2008;49(3):459-471
PURPOSE: This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). MATERIALS AND METHODS: The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. RESULTS: The dominant inward rectifier K+ channel subtypes were K(ir)2.1 and K(ir)6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100micrometer) and enhanced by high K+ (140mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300micrometer) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. CONCLUSION: HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process.
Animals
;
Barium/pharmacology
;
Blotting, Western
;
Cells, Cultured
;
Electrophysiology
;
Liver/cytology/*metabolism
;
Male
;
Membrane Potentials/drug effects
;
Potassium/pharmacology
;
Potassium Channels, Inwardly Rectifying/genetics/metabolism/*physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail