1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Effect of Erxian Decoction-containing serum on H_2O_2-induced proliferation and osteogenic differentiation of MC3T3-E1 cells via BK channels.
Ming-Shi REN ; Yu DING ; Zi-Han LI ; Yu-Meng WU ; Si-Min HUANG ; Lan-Lan LUO ; Yu-Jing ZHANG ; Min SHI ; Xun-Li XIA ; Bo LIU
China Journal of Chinese Materia Medica 2023;48(9):2522-2529
This study aimed to investigate the effects of Erxian Decoction(EXD)-containing serum on the proliferation and osteogenic differentiation of MC3T3-E1 cells under oxidative stress through BK channels. The oxidative stress model was induced in MC3T3-E1 cells by H_2O_2, and 3 mmol·L~(-1) tetraethylammonium(TEA) chloride was used to block the BK channels in MC3T3-E1 cells. MC3T3-E1 cells were divided into a control group, a model group, an EXD group, a TEA group, and a TEA+EXD group. After MC3T3-E1 cells were treated with corresponding drugs for 2 days, 700 μmol·L~(-1) H_2O_2 was added for treatment for another 2 hours. CCK-8 assay was used to detect cell proliferation activity. The alkaline phosphatase(ALP) assay kit was used to detect the ALP activity of cells. Western blot and real-time fluorescence-based quantitative PCR(RT-qPCR) were used to detect protein and mRNA expression, respectively. Alizarin red staining was used to detect the mineralization area of osteoblasts. The results showed that compared with the control group, the model group showed significantly blunted cell proliferation activity and ALP activity, reduced expression of BK channel α subunit(BKα), collagen Ⅰ(COL1), bone morphogenetic protein 2(BMP2), osteoprotegerin(OPG), and phosphorylated Akt, decreased mRNA expression levels of Runt-related transcription factor 2(RUNX2), BMP2, and OPG, and declining area of calcium nodules. EXD-containing serum could significantly potentiate the cell proliferation activity and ALP activity, up-regulate the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt, and forkhead box protein O1(FoxO1), promote the mRNA expression of RUNX2, BMP2, and OPG, and enlarge the area of calcium nodules. However, BK channel blockage by TEA reversed the effects of EXD-containing serum in promoting the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt and FoxO1, increasing the mRNA expression of RUNX2, BMP2, and OPG, and enlarging the area of calcium nodules. EXD-containing serum could improve the proliferation activity, osteogenic differentiation, and mineralization ability of MC3T3-E1 cells under oxidative stress, which might be related to the regulation of BK channels and downstream Akt/FoxO1 signaling pathway.
Osteogenesis
;
Core Binding Factor Alpha 1 Subunit/pharmacology*
;
Large-Conductance Calcium-Activated Potassium Channels/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Calcium/metabolism*
;
Cell Differentiation
;
RNA, Messenger/metabolism*
;
Cell Proliferation
;
Osteoblasts
3.Bismuth, esomeprazole, metronidazole, and minocycline or tetracycline as a first-line regimen for Helicobacter pylori eradication: A randomized controlled trial.
Baojun SUO ; Xueli TIAN ; Hua ZHANG ; Haoping LU ; Cailing LI ; Yuxin ZHANG ; Xinlu REN ; Xingyu YAO ; Liya ZHOU ; Zhiqiang SONG
Chinese Medical Journal 2023;136(8):933-940
BACKGROUND:
Given the general unavailability, common adverse effects, and complicated administration of tetracycline, the clinical application of classic bismuth quadruple therapy (BQT) is greatly limited. Whether minocycline can replace tetracycline for Helicobacter pylori ( H . pylori ) eradication is unknown. We aimed to compare the eradication rate, safety, and compliance between minocycline- and tetracycline-containing BQT as first-line regimens.
METHODS:
This randomized controlled trial was conducted on 434 naïve patients with H . pylori infection. The participants were randomly assigned to 14-day minocycline-containing BQT group (bismuth potassium citrate 110 mg q.i.d., esomeprazole 20 mg b.i.d., metronidazole 400 mg q.i.d., and minocycline 100 mg b.i.d.) and tetracycline-containing BQT group (bismuth potassium citrate/esomeprazole/metronidazole with doses same as above and tetracycline 500 mg q.i.d.). Safety and compliance were assessed within 3 days after eradication. Urea breath test was performed at 4-8 weeks after eradication to evaluate outcome. We used a noninferiority test to compare the eradication rates of the two groups. The intergroup differences were evaluated using Pearson chi-squared or Fisher's exact test for categorical variables and Student's t -test for continuous variables.
RESULTS:
As for the eradication rates of minocycline- and tetracycline-containing BQT, the results of both intention-to-treat (ITT) and per-protocol (PP) analyses showed that the difference rate of lower limit of 95% confidence interval (CI) was >-10.0% (ITT analysis: 181/217 [83.4%] vs . 180/217 [82.9%], with a rate difference of 0.5% [-6.9% to 7.9%]; PP analysis: 177/193 [91.7%] vs . 176/191 [92.1%], with a rate difference of -0.4% [-5.6% to 6.4%]). Except for dizziness more common (35/215 [16.3%] vs . 13/214 [6.1%], P = 0.001) in minocycline-containing therapy groups, the incidences of adverse events (75/215 [34.9%] vs . 88/214 [41.1%]) and compliance (195/215 [90.7%] vs . 192/214 [89.7%]) were similar between the two groups.
CONCLUSION:
The eradication efficacy of minocycline-containing BQT was noninferior to tetracycline-containing BQT as first-line regimen for H . pylori eradication with similar safety and compliance.
TRIAL REGISTRATION
ClinicalTrials.gov, ChiCTR 1900023646.
Humans
;
Bismuth/therapeutic use*
;
Metronidazole/therapeutic use*
;
Esomeprazole/pharmacology*
;
Minocycline/pharmacology*
;
Helicobacter pylori
;
Potassium Citrate/therapeutic use*
;
Anti-Bacterial Agents
;
Tetracycline/adverse effects*
;
Helicobacter Infections/drug therapy*
;
Drug Therapy, Combination
;
Amoxicillin
4.The mechanism of blood pressure regulation by high potassium diet in the kidney.
Gui-Lin MENG ; Xin-Xin MENG ; Rui-Min GU ; Ming-Xiao WANG
Acta Physiologica Sinica 2022;74(1):110-116
Hypertension is one of the strongest risk factors for cardiovascular diseases, cerebral stroke, and kidney failure. Lifestyle and nutrition are important factors that modulate blood pressure. Hypertension can be controlled by increasing physical activity, decreasing alcohol and sodium intake, and stopping tobacco smoking. Chronic kidney disease patients often have increased blood pressure, which indicates that kidney is one of the major organs responsible for blood pressure homeostasis. The decrease of renal sodium reabsorption and increase of diuresis induced by high potassium intake is critical for the blood pressure reduction. The beneficial effect of a high potassium diet on hypertension could be explained by decreased salt reabsorption by sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT). In DCT cells, NCC activity is controlled by with-no-lysine kinases (WNKs) and its down-stream target kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1). The kinase activity of WNKs is inhibited by intracellular chloride ([Cl-]i) and WNK4 is known to be the major WNK positively regulating NCC. Based on our previous studies, high potassium intake reduces the basolateral potassium conductance, decreases the negativity of DCT basolateral membrane (depolarization), and increases [Cl-]i. High [Cl-]i inhibits WNK4-SPAK/OSR1 pathway, and thereby decreases NCC phosphorylation. In this review, we discuss the role of DCT in the blood pressure regulation by dietary potassium intake, which is the mechanism that has been best dissected so far.
Blood Pressure
;
Diet
;
Humans
;
Kidney/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Phosphorylation
;
Potassium/pharmacology*
;
Protein Serine-Threonine Kinases
;
Solute Carrier Family 12, Member 3/metabolism*
5.Anti -epileptic effect of 2 -deoxy -D -glucose by activation of miR -194/KATP signaling pathway.
Journal of Central South University(Medical Sciences) 2022;47(8):1099-1107
OBJECTIVES:
Epilepsy is a syndrome of central nervous system dysfunction caused by many reasons, which is mainly characterized by abnormal discharge of neurons in the brain. Therefore, finding new targets for epilepsy therapy has always been the focus and hotspot in neurological research field. Studies have found that 2-deoxy-D-glucose (2-DG) exerts anti-epileptic effect by up-regulation of KATP channel subunit Kir6.1, Kir6.2 mRNA and protein. By using the database of TargetScan and miRBase to perform complementary pairing analysis on the sequences of miRNA and related target genes, it predicted that miR-194 might be the upstream signaling molecule of KATP channel. This study aims to explore the mechanism by which 2-DG exerts its anti-epileptic effect by regulating KATP channel subunits Kir6.1 and Kir6.2 via miR-194.
METHODS:
A magnesium-free epilepsy model was established and randomly divided into a control group, an epilepsy group (EP group), an EP+2-DG group, and miR-194 groups (including EP+miR-194 mimic, EP+miR-194 mimic+2-DG, EP+miR-194 mimic control, EP+miR-194 inhibitor, EP+miR-194 inhibitor+2-DG, and EP+miR-194 inhibitor control groups). The 2-DG was used to intervene miR-194 mimics, patch-clamp method was used to detect the spontaneous recurrent epileptiform discharges, real-time PCR was used to detect neuronal miR-194, Kir6.1, and Kir6.2 expressions, and the protein levels of Kir6.1 and Kir6.2were detected by Western blotting.
RESULTS:
Compared with the control group, there was no significant difference in the amplitude of spontaneous discharge potential in the EP group (P>0.05), but the frequency of spontaneous discharge was increased (P<0.05). Compared with the EP group, the frequency of spontaneous discharge was decreased (P<0.05). Compared with the EP+miR-194 mimic control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 mimic group were down-regulated (all P<0.05). Compared with the EP+miR-194 inhibitor control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor group were up-regulated (all P<0.05). After pretreatment with miR-194 mimics, the mRNA and protein expression levels of KATP channel subunits Kir6.1 and Kir6.2 were decreased (all P<0.05). Compared with the EP+2-DG group, the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 mimic+2-DG group were down-regulated (all P<0.05) and the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor+2-DG group were up-regulated (all P<0.05).
CONCLUSIONS
The 2-DG might play an anti-epilepsy effect by up-regulating KATP channel subunits Kir6.1 and Kir6.2via miR-194.
Adenosine Triphosphate
;
Anticonvulsants
;
Deoxyglucose/pharmacology*
;
Epilepsy/genetics*
;
Glucose
;
Humans
;
MicroRNAs/genetics*
;
Potassium Channels, Inwardly Rectifying/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
6.Effect of cinobufagin on transient outward potassium current in dorsal root ganglion cells of rats with cancer-induced bone pain.
Shiyu ZHU ; Dan LIU ; Wei HU ; Hongwei YANG
Journal of Southern Medical University 2019;39(9):1078-1082
OBJECTIVE:
To observe the effect of cinobufagin on transient outward potassium current () in rat dorsal root ganglion cells of cancer-induced bone pain (CIBP) and explore the possible analgesic mechanism of cinobufagin.
METHODS:
Whole cell patch clamp technique was used to examine the effect of cionbufagin on in acutely isolated dorsal root ganglion (DRG) cells from normal SD rats and rats with bone cancer pain.
RESULTS:
The DRG cells from rats with CIBP showed obviously decreased current density, an activation curve shift to the right, and an inactivation curve shift to the left. Cinobufagin treatment significantly increased the current density and reversed the changes in the activation and inactivation curves in the DRG cells.
CONCLUSIONS
current is decreased in DRG neurons from rats with CIBP. Cinobufagin can regulate the activation and inactivation of current in the DRG cells, which may be related to its analgesic mechanism.
Analgesics
;
pharmacology
;
Animals
;
Bufanolides
;
pharmacology
;
Cancer Pain
;
drug therapy
;
Cells, Cultured
;
Ganglia, Spinal
;
drug effects
;
Patch-Clamp Techniques
;
Potassium Channels
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
7.Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury.
Yiqian SHI ; Yangyang CHEN ; Yun WANG
Neuroscience Bulletin 2019;35(2):301-314
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Animals
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Glycine
;
metabolism
;
Hyperalgesia
;
drug therapy
;
etiology
;
metabolism
;
Imidazoles
;
pharmacology
;
Inhibitory Postsynaptic Potentials
;
drug effects
;
physiology
;
Male
;
Mice, Inbred C57BL
;
Neurons
;
drug effects
;
metabolism
;
Neurotransmitter Agents
;
pharmacology
;
Peripheral Nerve Injuries
;
drug therapy
;
metabolism
;
Phenanthrolines
;
pharmacology
;
Potassium Channels, Inwardly Rectifying
;
antagonists & inhibitors
;
metabolism
;
Receptors, GABA-A
;
metabolism
;
Receptors, Glycine
;
metabolism
;
Strychnine
;
pharmacology
;
Synaptic Transmission
;
drug effects
;
physiology
;
Tissue Culture Techniques
;
Touch
8.The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Shanyu CUI ; Hyewon PARK ; Hyelim PARK ; Dasom MUN ; Seung Hyun LEE ; Hyoeun KIM ; Nuri YUN ; Hail KIM ; Michael KIM ; Hui Nam PAK ; Moon Hyoung LEE ; Boyoung JOUNG
Yonsei Medical Journal 2018;59(2):279-286
PURPOSE: The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. MATERIALS AND METHODS: We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(−/−)-NP). RESULTS: During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(−/−)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. CONCLUSION: Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents.
*Action Potentials/drug effects
;
Animals
;
Cell Membrane/drug effects/metabolism
;
Disease Models, Animal
;
Electrocardiography
;
Female
;
HSC70 Heat-Shock Proteins/metabolism
;
HSP90 Heat-Shock Proteins/metabolism
;
Heart Ventricles/drug effects/*metabolism
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Myocytes, Cardiac/drug effects/metabolism
;
Potassium Channels/metabolism
;
Pregnancy
;
Rabbits
;
Rats, Sprague-Dawley
;
Receptors, Serotonin, 5-HT3/metabolism
;
Serotonin/*metabolism
;
Serotonin 5-HT3 Receptor Agonists/pharmacology
9.Beneficial Effect of Berberis amurensis Rupr. on Penile Erection.
Rui TAN ; Yun Jung LEE ; Kyung Woo CHO ; Dae Gill KANG ; Ho Sub LEE
Chinese journal of integrative medicine 2018;24(6):448-454
OBJECTIVETo investigate whether the methanol extract of Berberis amurensis Rupr. (BAR) augments penile erection using in vitro and in vivo experiments.
METHODSThe ex vivo study used corpus cavernosum strips prepared from adult male New Zealand White rabbits. In in vivo studies for intracavernous pressure (ICP), blood pressure, mean arterial pressure (MAP), and increase of peak ICP were continuously monitored during electrical stimulation of Sprague-Dawley rats.
RESULTSPreconstricted with phenylephrine (PE) in isolated endotheliumintact rabbit corus cavernosum, BAR relaxed penile smooth muscle in a dose-dependent manner, which was inhibited by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, and H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1-one, a soluble guanylyl cclase inhibitor. BAR significantly relaxed penile smooth muscles dose-dependently in ex vivo, and this was inhibited by pretreatment with L-NAME H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1-one. BAR-induced relaxation was significantly attenuated by pretreatment with tetraethylammonium (TEA, P<0.01), a nonselective K channel blocker, 4-aminopyridine (4-AP, P<0.01), a voltage-dependent K channel blocker, and charybdotoxin (P<0.01), a large and intermediate conductance Ca sensitive-K channel blocker, respectively. BAR induced an increase in peak ICP, ICP/MAP ratio and area under the curve dose dependently.
CONCLUSIONBAR augments penile erection via the nitric oxide/cyclic guanosine monophosphate system and Ca sensitive-K (BK and IK) channels in the corpus cavernosum.
Animals ; Area Under Curve ; Berberis ; chemistry ; Blood Pressure ; drug effects ; Cyclic GMP ; metabolism ; Epoprostenol ; pharmacology ; In Vitro Techniques ; Indomethacin ; pharmacology ; Male ; Models, Biological ; Muscle Relaxation ; drug effects ; Muscle, Smooth ; drug effects ; physiology ; NG-Nitroarginine Methyl Ester ; pharmacology ; Nitric Oxide ; metabolism ; Penile Erection ; drug effects ; Phenylephrine ; pharmacology ; Plant Extracts ; pharmacology ; Potassium Channel Blockers ; pharmacology ; Potassium Channels ; metabolism ; Pressure ; Rabbits
10.Characterization and pathophysiological changes of cerebral infarction rat model with qi-deficiency and blood-stasis Syndrome.
Ying LI ; Lei-Sha WANG ; Jian-Xun LIU ; Wen-Ting SONG ; Li XU ; Hong-Hai LI ; Jun-Mei LI ; Bin YANG ; Xiao-Xia DONG ; Guang-Rui WANG ; Ming-Jiang YAO ; Cheng-Ren LIN
China Journal of Chinese Materia Medica 2018;43(4):786-793
This study aimed to observe the general state and changes in pathophysiological indexes of multiple cerebral infarction rat model with Qi-deficienty and Blood-stasis syndrome. Rats were randomly divided into 4 groups(with 30 in each group): the normal group, the sham group, the model group and the Yiqi Huoxue recipe group. Rats in the model group and Yiqi Huoxue group were provided with interruptable sleep deprivation for 7 days before the multiple cerebral infarction operation, and followed by another 4 weeks of sleep deprivation; rats in the Yiqi Huoxue group were intragastrically administrated with drug at a dose of 26 g·kg⁻¹, once a day for 4 weeks. The general state was observed, and the pathophysiological indexes were measured at 48 h, 2 weeks and 4 weeks after administration. The results showed that rats in the normal group and the sham group represented a good general state and behaviors, with a normal morphological structure of brain tissues; rats in the model group featured yellow fur, depression, accidie, loose stools and movement disorder, with obvious brain histomorphological damage, which became aggravated with the increase of modeling time; rats in the Yiqi Huoxue group showed release in the general state and above indexes. Compared with the sham group at three time points, rats in the model group showed decrease in body weight, exhaustive swimming time and RGB value of tongue surface image, and increase in whole blood viscosity of the shear rate under 5, 60 and 150 S⁻¹, reduction in cerebral cortex Na⁺-K⁺-ATPase, Ca²⁺-ATPase activity and contents of 5-HT, rise in TXB2 levels and decline in 6-keto-PGF1a in serum(<0.05, <0.01). Compared with the model group, rats in the Yiqi Huoxue group showed alleviations in the above indexes at 2 w and 4 w(<0.05, <0.01). The results showed that the characterization and pathophysiological indexes in the multiple cerebral infarction rat model with Qi-deficiency and blood-stasis syndrome were deteriorated; Yiqi Huoxue recipe could significantly alliviate the abnormal conditions, which suggested of the model was stable and reliable and the pathophysiologic evolutionary mechanism might be related to energy metabolism dysfunction, vasoactive substance abnormality and changes in neurotransmitters.
Animals
;
Calcium-Transporting ATPases
;
metabolism
;
Cerebral Infarction
;
physiopathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Energy Metabolism
;
Medicine, Chinese Traditional
;
Qi
;
Rats
;
Sodium-Potassium-Exchanging ATPase
;
metabolism

Result Analysis
Print
Save
E-mail