1.Astragalus polysaccharide protects against blood-brain barrier damage in MCAO rats by inhibiting P2X7R channel.
Qiao YUAN ; Li Ying XIE ; Chao Jun CHEN
Journal of Southern Medical University 2022;42(11):1705-1711
OBJECTIVE:
To investigate the protective effect of astragalus polysaccharide (APS) against blood-brain barrier in a rat model of middle cerebral artery occlusion (MCAO) and the role of P2X7R channel in the protective mechanism.
METHODS:
In rat microglial cell models of oxygen and glucose deprivation (OGD) or ATP treatment, the formation of blood-brain barrier in vitro was assessed using the leak test, and the effect of APS on the permeability of the blood-brain barrier was determined using LC-MS. In 12 SD rats, MCAO model was established followed by treatment with intraperitoneal injection of normal saline (n= 6) or APS (45 mg/kg, n=6) for 3 consecutive days, with another 6 rats without MCAO receiving saline injections as the control group. The permeability of the blood-brain barrier of the rats was evaluated by determining Evans blue (EB) extravasation, and ATP content in the brain tissue was detected using ELISA; the expression levels of matrix metalloproteinase-9 (MMP-9) and P2X7R in the brain tissue were detected with Western blot.
RESULTS:
In the in vitro cell model of OGD or ATP treatment, APS treatment obviously promoted the repair of blood-brain barrier integrity. In the rat models, the EB content in the brain tissue and the blood-brain barrier permeability increased significantly in MCAO+saline group and MCAO+APS group as compared with those in the control group (P < 0.01). Compared with saline treatment, APS treatment significantly decreased EB content in the brain tissue and improved the blood-brain barrier permeability in the MCAO rats (P < 0.05). MCAO caused a significant reduction of ATP content and obviously increased the expression levels of MMP-9 and P2X7R in the brain tissue of the rats (P < 0.01), and these changes were significantly alleviated after APS treatment (P < 0.01 or 0.05).
CONCLUSION
APS can protect the brain tissue of MCAO rats by stabilizing the internal environment, down-regulating the expression of MMP-9 and improving the permeability of blood-brain barrier under cerebral ischemia and hypoxia, and its mechanism may involve the inhibition of P2X7R channel.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Blood-Brain Barrier
;
Infarction, Middle Cerebral Artery
;
Matrix Metalloproteinase 9
;
Polysaccharides/pharmacology*
;
Evans Blue
;
Oxygen
;
Glucose
;
Adenosine Triphosphate
2.Lycium barbarum polysaccharides regulate AMPK/Sirt autophagy pathway to delay D-gal-induced premature ovarian failure.
Yin JIANG ; Hui WANG ; Xiao YU ; Yi DING
China Journal of Chinese Materia Medica 2022;47(22):6175-6182
This study aims to explore the molecular mechanism of Lycium barbarum polysaccharides(LBP) in alleviating premature ovarian failure(POF) in mice via the 5'-adenosine monophosphate activated protein kinase(AMPK)/silent information regulator 1(Sirt1) signaling pathway. The POF mouse model was established by D-galactose(D-gal) injection at the back. Six groups were set up, including a normal control group, a model group, a LBP group, a 3-MA(autophagy inhibitor 3-methyladenine) group, an AMPK inhibitor group, and a LBPAMPK inhibitor group, with 15 mice in each group. After 28 continuous days of administration, enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of sex hormones [estradiol(E_2), luteinizing hormone(LH), and follicle-stimulating hormone(FSH)] in serum. The ovarian mass coefficient was measured. Senescence-associated β-Galactosidase(SA-β-Gal) staining and hematoxylin-eosin(HE) staining were performed for observing the state of ovarian senescence and the morphological changes of the ovary. Immunohistochemical method was used to measure the expression of the autophagy marker LC3-Ⅱ in ovarian tissue. Western blot was employed to measure the expression levels of the senescence marker p16~(INK4 a), autophagy markers(LC3-Ⅱ and Beclin-1), the autophagy substrate p62, lysosome-associated membrane protein 2(LAMP2), and the proteins in the AMPK/Sirt1 pathway and mammalian target of rapamycin complex 1(mTORC1)/UNC-51-like kinase 1 Ser757 site(Ulk1 Ser757) pathway. Compared with the normal control group, the modeling of POF decreased the ovarian granulosa cells and follicles, led to the ovarian aging and severe sex hormone secretion disorders, weakened ovarian autophagy activity, and down-regulated the expression of proteins in the AMPK/Sirt1 pathway(P<0.05). Compared with the model group, the treatment with LBP increased ovarian granulosa cells and follicles, alleviated aging and sex hormone disorders, increased autophagy activity, and activated the AMPK/Sirt1 pathway(P<0.05). Both 3-MA and AMPK inhibitor can inhibit autophagy and aggravate ovarian damage and aging in mice. AMPK inhibitor can partially attenuate the role of LBP in promoting autophagy activation and alleviating aging and ovarian tissue damage(P<0.05). LBP can alleviate the symptoms of POF induced by D-gal by promoting the activation of AMPK/Sirt1 pathway.
Animals
;
Female
;
Humans
;
Mice
;
AMP-Activated Protein Kinases/metabolism*
;
Autophagy/drug effects*
;
Follicle Stimulating Hormone/blood*
;
Lycium/chemistry*
;
Polysaccharides/therapeutic use*
;
Primary Ovarian Insufficiency/drug therapy*
;
Sirtuin 1/metabolism*
3.Probiotics with anti-type 2 diabetes mellitus properties: targets of polysaccharides from traditional Chinese medicine.
Lun WU ; Yue GAO ; Yang SU ; Jing LI ; Wen-Chen REN ; Qiu-Hong WANG ; Hai-Xue KUANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):641-655
Traditional Chinese medicine polysaccharides is a biologically active ingredient that is not easy to be digested. It is fermented by intestinal microflora to promote qualitative and selective changes in the composition of the intestinal microbiome, which often result in beneficial effects on the health of the host. People call it "prebiotics". In this review, we systematically summarized the anti-diabetic effect of traditional Chinese medicine polysaccharides. These polysaccharides regulate the metabolism of sugar and lipids by inter-influence with the intestinal microflora, and maintain human health, while improving type 2 diabetes-like symptoms such as high blood glucose, and abnormal glucose and lipid metabolism.
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Humans
;
Lipids
;
Medicine, Chinese Traditional
;
Polysaccharides/pharmacology*
;
Probiotics/therapeutic use*
4.Research progress and analysis on mechanism of polysaccharides against type 2 diabetes mellitus.
Fu-Jun LIU ; Xiao-Ying LIU ; Yu MA ; Wei-Lan WANG ; Jin-Yao LI
China Journal of Chinese Materia Medica 2021;46(3):552-559
Polysaccharides are macromolecular compounds formed by more than 10 monosaccharide molecules linked by glycosidic bonds. Polysaccharides have a wide range of sources, high safety and low toxicity, with a variety of biological activities, such as anti-tumor, anti-virus, immune regulation, lowering blood glucose, and lowering blood lipids. Type 2 diabetes mellitus(T2 DM) is a chronic metabolic disorder characterized by hyperglycemia, insulin resistance and low inflammation. In recent years, the treatment of T2 DM with polysaccharide has become a research hotspot. Polysaccharides can not only make up for the side effects such as hypoglycemia, weight gain, gastrointestinal injury caused by long-term treatment of acarbose, biguanidine and sulfonylurea, but also play an effective role in reducing glucose by regulating glucose metabolism, oxidative stress, inflammatory response, intestinal flora, etc. In this paper, the research progress of polysaccharides in the treatment of T2 DM was reviewed. In addition, the hot spots such as the hypoglycemic activity of polysaccharides with structural modifications were summarized, providing theoretical guidance for the development of active polysaccharide hypoglycemic medicines and the further study of action mechanism.
Blood Glucose
;
Diabetes Mellitus, Type 2/drug therapy*
;
Humans
;
Hypoglycemic Agents/pharmacology*
;
Insulin Resistance
;
Polysaccharides
5.Angelica Polysaccharide Resists Platelets Apoptosis Induced by LY294002.
Hui-Ling WEI ; Chi-Xiang LIU ; Shi-Chao CHEN ; Mo YANG
Journal of Experimental Hematology 2019;27(4):1208-1214
OBJECTIVE:
To investigate the anti-apoptotic effect of Angelica polysaccharide (APS) on cryopreservated platelets and its mechanism.
METHODS:
The platelets were divided into 4 group: control group(4 ℃ stored platelets),APS group (APS-treated platelets stored at 4 ℃), LY294002 group (LY294002-treated platelets stored at 4 ℃) and LY294002+APS group(LY294002+APS treated platelets stored at 4 ℃ ). The expression of platelet membrane glycoprotein CD41 and CD61, as well as the platelet apoptotic rate, Caspase 3 expression and mitochondrial membrane potential (MMP) were detected by flow cytometry; the anti-apoptotic mechanism of APS by PI3K /AKT signaling pathway was analyzed by Western blot assay.
RESULTS:
The apoptosis rate of platelets in LY294002 group obviously increased, the activity of CD41 and CD61 expression gradually decreased along with the enhancement of LY294002 concentrations (r=-0.953); compared with control group, the apoptosis rate of platelets in LY294002 group was enhanced significantly(P<0.05),while the apoptosis rate of platelets in LY294002+APS group significantly was reduced(P<0.05) as compare with LY294002 group, which suggest that APS has an anti-apoptotic effect on the cryopreserved platelets. APS decreased the expression of Caspase-3 and inhibited the reduction of mitochondrial membrane potential induced by LY294002, moreover, APS could increase the activation of PI3K /AKT pathway in Plt.
CONCLUSION
APS has an anti-apoptotic effect on the cryopreserved platelets through activating the PI3K /AKT pathway, decreasing the expression of apoptosis protease Caspase-3 and inhibiting the reduction of MMP.
Angelica
;
Apoptosis
;
Blood Platelets
;
Chromones
;
Morpholines
;
Phosphatidylinositol 3-Kinases
;
Polysaccharides
;
Proto-Oncogene Proteins c-akt
6.Association between IgG N-glycans and Nonalcoholic Fatty Liver Disease in Han Chinese.
Zhong Yao ZHAO ; Di LIU ; Wei Jie CAO ; Ming SUN ; Man Shu SONG ; Wei WANG ; You Xin WANG
Biomedical and Environmental Sciences 2018;31(6):454-458
Nonalcoholic fatty liver disease (NAFLD) is a major public health issue worldwide. Immunoglobulin G (IgG) N-glycans are associated with risk factors for NAFLD, such as obesity and diabetes. A cross-sectional study involving 500 Han Chinese adults recruited from a community in Beijing was carried out to explore the association between IgG N-glycans and NAFLD. IgG N-glycosylation was significantly associated with NAFLD, with the disease showing a negative correlation with galactosylation (GP14, GP14n, and G2n), positive correlation with fucosylation (FBG2n/G2n), and positive correlation with bisecting N-acetylglucosamine (GlcNAc) [FBG2n/FG2n and FBG2n/(FG2n+FBG2n)], after controlling age, gender, and prevalence of obesity, type 2 diabetes mellitus, hypertension, and hyperlipidemia. In other words, the present study showed a possible association between NAFLD and the loss of galactose and elevations of fucose and bisecting GlcNAc. Aberrant IgG glycosylation might therefore be a potential biomarker for the primary or secondary prevention of NAFLD.
Biomarkers
;
blood
;
China
;
Cross-Sectional Studies
;
Diabetes Mellitus, Type 2
;
blood
;
complications
;
Female
;
Glycosylation
;
Humans
;
Immunoglobulin G
;
blood
;
Male
;
Middle Aged
;
Non-alcoholic Fatty Liver Disease
;
blood
;
etiology
;
Obesity
;
blood
;
complications
;
Odds Ratio
;
Polysaccharides
;
blood
;
Risk Factors
7.Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model.
Ying HAN ; Tong ZHAO ; Xiang CHENG ; Ming ZHAO ; Sheng-Hui GONG ; Yong-Qi ZHAO ; Hai-Tao WU ; Ming FAN ; Ling-Ling ZHU
Neuroscience Bulletin 2018;34(6):1058-1066
While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Caspase 3
;
metabolism
;
Cerebral Cortex
;
pathology
;
Claudin-5
;
metabolism
;
Colitis
;
chemically induced
;
complications
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Dextran Sulfate
;
toxicity
;
Disease Models, Animal
;
Encephalitis
;
etiology
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Microfilament Proteins
;
metabolism
;
Occludin
;
metabolism
;
Polysaccharides
;
blood
;
toxicity
;
Time Factors
8.Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.
Ozevren HÜSEYIN ; Irtegün SEVGI ; Deveci ENGIN ; Aşır FIRAT ; Pektanç GÜLSÜM ; Deveci ŞENAY
Korean Journal of Neurotrauma 2017;13(2):76-84
OBJECTIVE: Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum (G. lucidum) polysaccharides (GLPs) on brain injury in brain-traumatized rats. METHODS: Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum, trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. RESULTS: In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. CONCLUSION: We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.
Animals
;
Blood-Brain Barrier
;
Blotting, Western
;
Brain Injuries
;
Brain*
;
Cerebrovascular Circulation
;
Edema
;
Ganoderma*
;
Glutathione
;
Inflammation
;
Malondialdehyde
;
Methods
;
Neuroglia
;
Neurons
;
Oxidative Stress*
;
Peroxidase
;
Polysaccharides
;
Protein Kinases
;
Rats*
;
Rats, Sprague-Dawley
;
Reishi*
;
Vascular Endothelial Growth Factor A
10.Preventive effects of the polysaccharide of Larimichthys crocea swim bladder on carbon tetrachloride (CCl4)-induced hepatic damage.
Xin ZHAO ; Yu QIAN ; Gui-Jie LI ; Jun TAN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(7):521-528
The aim of the present study was to determine the preventive effects of the polysaccharide of Larimichthys crocea swim bladder (PLCSB) on CCl4-induced hepatic damage in ICR mice. The in vitro preventive effects of PLCSB on CCl4-induced liver cytotoxic effect were evaluated in BRL 3A rat liver cells using the MTT assay. The serum levels of AST, ALT, and LDH in mice were determined using commercially available kits. The levels of IL-6, IL-12, TNF-α, and IFN-γ were determined using ELISA kits. The pathological analysis of hepatic tissues was performed with H and E staining, and the gene and protein expressions were determined by RT-PCR and Western blotting, respectively. PLCSB (20 μg·mL(-1)) could increase the growth of BRL 3A rat liver cells treated with CCl4. The serum levels of AST, ALT, and LDH were significantly decreased when the mice were treated with two doses of PLCSB, compared with the control mice (P < 0.05). PLCSB-treated groups also showed reduced levels of the serum pro-inflammatory cytokines IL-6, IL-12, TNF-α, and IFN-γ. PLCSB could decrease the liver weight, compared to the CCl4-treated control mice. The histopathology sections of liver tissues in the 100 mg·kg(-1) PLCSB group indicated that the animals were recovered well from CCl4 damage, but the 50 mg·kg(-1) PLCSB group showed necrosis to a more serious extent. The 100 mg·kg(-1) PLCSB group showed significantly decreased mRNA and protein expression levels of NF-κB, iNOS, and COX-2, and increased expression of IκB-α compared with the CCl4-treated control group. In conclusion, PLCSB prevented from CCl4-induced hepatic damage in vivo.
Animal Structures
;
chemistry
;
Animals
;
Biological Products
;
pharmacology
;
therapeutic use
;
Carbon Tetrachloride
;
Carbon Tetrachloride Poisoning
;
drug therapy
;
metabolism
;
pathology
;
Chemical and Drug Induced Liver Injury
;
metabolism
;
pathology
;
prevention & control
;
Cyclooxygenase 2
;
metabolism
;
Cytokines
;
blood
;
I-kappa B Proteins
;
metabolism
;
Inflammation Mediators
;
blood
;
Liver
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred ICR
;
NF-KappaB Inhibitor alpha
;
NF-kappa B
;
metabolism
;
Necrosis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Perciformes
;
Polysaccharides
;
pharmacology
;
therapeutic use
;
RNA, Messenger
;
metabolism

Result Analysis
Print
Save
E-mail