1.Analysis of genotypes on 850 newborns with SLC26A4 single-allele mutation and the phenotypes of those with second variant.
Li Hui HUANG ; Xue Lei ZHAO ; Xiao Hua CHENG ; Yi Ding YU ; Cheng WEN ; Yue LI ; Xian Lei WANG ; Xue Yuao WANG ; Yu RUAN ; Hui EN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(2):117-125
Objective: To clarify the phenotypes of the newborns with SLC26A4 single-allele mutation in deafness genetic screening and second variant; to analyze the SLC26A4 genotype and hearing phenotype. Methods: 850 newborns born in Beijing from April 2015 to December 2019 were included and there were 468 males and 382 females. They received genetic deafness screening for 9 or 15 variants, with the result of SLC26A4 single-allele mutation. Firstly, three step deafness gene sequencing was adopted in this work, i.e., the first step was "SLC26A4 gene whole exons and splice sites" sequencing; the second step was "SLC26A4 gene promoter, FOXI1 gene and KCNJ10 gene whole exons" sequencing; and the third step was detection for "SLC26A4 gene copy number variation". Secondly, we collected the results of newborn hearing screening for all patients with the second mutation found in the three step test, and conducted audiological examinations, such as acoustic immittance, auditory brainstem response and auditory steady state response. Thirdly, for novel/VUS mutations, we searched the international deafness gene database or software, such as DVD, ClinVar and Mutation Taster, to predict the pathogenicity of mutations according to the ACMG guideline. Lastly, we analyzed the relationship between genotype and phenotype of newborns with SLC26A4 single allele mutation. Results: Among 850 cases, the median age of diagnosis was 4 months. In the first step, 850 cases were sequenced. A total of 32 cases (3.76%, 32/850) of a second variants were detected, including 18 cases (2.12%, 18/850) with identified pathogenic variants; 832 cases were sequenced and 8 cases of KCNJ10 gene missense variants were detected among the second step. No missense mutations in the FOXI1 gene and abnormal SLC26A4 gene promoter were detected; the third step sequencing results were all negative. Genotypes and hearing phenotypes included 18 cases combined with the second clear pathogenic variant, 16 cases (16/18) referred newborn hearing screening and 2 cases (2/18) passed in both ears; degree of hearing loss consisted of 18 profound ears (18/36), 13 severe ears (13/36) and 5 moderate ears (5/36); audiogram patterns comprised 17 high frequency drop ears (17/36), 14 flat ears (14/36), 3 undistinguished ears (3/36), and 2 U shaped ears (2/36); 11 cases underwent imaging examination, all of which were bilateral enlarged vestibular aqueduct. As for 22 cases of other genotypes, all passed neonatal hearing screening and the hearing diagnosis was normal, including 9 cases with VUS or possibly novel benign variants, 8 cases with KCNJ10 double gene heterozygous variants, and 5 cases with double heterozygous variants. Conclusions: The probability of individuals with SLC26A4 single-allele variant who merge with a second pathogenic variant is 2.12%, all of which are SNV, which can provide scientific basis for the genetic diagnosis and genetic counseling of SLC26A4 variants. Those who have merged with second pathogenic variant are all diagnosed with sensorineural hearing loss. Patients with KCNJ10 gene mutations do not manifest hearing loss during the infancy, suggesting the need for further follow-up.
Female
;
Humans
;
Male
;
Alleles
;
Deafness/genetics*
;
DNA Copy Number Variations
;
Forkhead Transcription Factors/genetics*
;
Genotype
;
Hearing Loss/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Phenotype
;
Sulfate Transporters/genetics*
;
Vestibular Aqueduct
;
Infant, Newborn
;
Potassium Channels, Inwardly Rectifying/genetics*
2.Role of melatonin receptor 1B gene polymorphism and its effect on the regulation of glucose transport in gestational diabetes mellitus.
Lijie WEI ; Yi JIANG ; Peng GAO ; Jingyi ZHANG ; Xuan ZHOU ; Shenglan ZHU ; Yuting CHEN ; Huiting ZHANG ; Yuanyuan DU ; Chenyun FANG ; Jiaqi LI ; Xuan GAO ; Mengzhou HE ; Shaoshuai WANG ; Ling FENG ; Jun YU
Journal of Zhejiang University. Science. B 2023;24(1):78-88
Melatonin receptor 1B (MT2, encoded by the MTNR1B gene), a high-affinity receptor for melatonin, is associated with glucose homeostasis including glucose uptake and transport. The rs10830963 variant in the MTNR1B gene is linked to glucose metabolism disorders including gestational diabetes mellitus (GDM); however, the relationship between MT2-mediated melatonin signaling and a high birth weight of GDM infants from maternal glucose abnormality remains poorly understood. This article aims to investigate the relationship between rs10830963 variants and GDM development, as well as the effects of MT2 receptor on glucose uptake and transport in trophoblasts. TaqMan-MGB (minor groove binder) probe quantitative real-time polymerase chain reaction (qPCR) assays were used for rs10930963 genotyping. MT2 expression in the placenta of GDM and normal pregnant women was detected by immunofluorescence, western blot, and qPCR. The relationship between MT2 and glucose transporters (GLUTs) or peroxisome proliferator-activated receptor γ (PPARγ) was established by western blot, and glucose consumption of trophoblasts was measured by a glucose assay kit. The results showed that the genotype and allele frequencies of rs10830963 were significantly different between GDM and normal pregnant women (P<0.05). The fasting, 1-h and 2-h plasma glucose levels of G-allele carriers were significantly higher than those of C-allele carriers (P<0.05). Besides, the protein and messenger RNA (mRNA) expression of MT2 in the placenta of GDM was significantly higher than that of normal pregnant women (P<0.05). Melatonin could stimulate glucose uptake and GLUT4 and PPARγ protein expression in trophoblasts, which could be attenuated by MT2 receptor knockdown. In conclusion, the rs10830963 variant was associated with an increased risk of GDM. The MT2 receptor is essential for melatonin to raise glucose uptake and transport, which may be mediated by PPARγ.
Female
;
Humans
;
Pregnancy
;
Blood Glucose/metabolism*
;
Diabetes, Gestational/metabolism*
;
Glucose/metabolism*
;
Melatonin/metabolism*
;
Polymorphism, Genetic
;
PPAR gamma
;
Receptor, Melatonin, MT2/genetics*
3.Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas.
Fangyu WANG ; Xuan LIU ; Shaowen LI ; Chen ZHAO ; Yumei SUN ; Kuan TIAN ; Junbao WANG ; Wei LI ; Lichao XU ; Jing JING ; Juan WANG ; Sylvia M EVANS ; Zhiqiang LI ; Ying LIU ; Yan ZHOU
Protein & Cell 2023;14(2):105-122
Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Mice
;
Animals
;
Humans
;
Glioblastoma/pathology*
;
Endothelial Cells/pathology*
;
DNA Copy Number Variations
;
Brain/metabolism*
;
Brain Neoplasms/pathology*
4.Associations of cholecystectomy with the risk of colorectal cancer: a Mendelian randomization study.
Lanlan CHEN ; Zhongqi FAN ; Xiaodong SUN ; Wei QIU ; Wentao MU ; Kaiyuan CHAI ; Yannan CAO ; Guangyi WANG ; Guoyue LV
Chinese Medical Journal 2023;136(7):840-847
BACKGROUND:
Cholecystectomy is a standard surgery for patients suffering from gallbladder diseases, while the causal effects of cholecystectomy on colorectal cancer (CRC) and other complications are still unknown.
METHODS:
We obtained genetic variants associated with cholecystectomy at a genome-wide significant level ( P value <5 × 10 -8 ) as instrumental variables (IVs) and performed Mendelian randomization (MR) to identify the complications of cholecystectomy. Furthermore, the cholelithiasis was also treated as the exposure to compare its causal effects to those of cholecystectomy, and multivariable MR analysis was carried out to judge whether the effect of cholecystectomy was independent of cholelithiasis. The study was reported based on Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization guidelines.
RESULTS:
The selected IVs explained 1.76% variance of cholecystectomy. Our MR analysis suggested that cholecystectomy cannot elevate the risk of CRC (odds ratio [OR] =1.543, 95% confidence interval [CI]: 0.607-3.924). Also, it was not significant in either colon or rectum cancer. Intriguingly, cholecystectomy might decrease the risk of Crohn's disease (OR = 0.078, 95% CI: 0.016-0.368) and coronary heart disease (OR = 0.352, 95% CI: 0.164-0.756). However, it might increase the risk of irritable bowel syndrome (IBS) (OR = 7.573, 95% CI: 1.096-52.318). Cholelithiasis could increase the risk of CRC in the largest population (OR = 1.041, 95% CI: 1.010-1.073). The multivariable MR analysis suggested that genetic liability to cholelithiasis could increase the risk of CRC in the largest population (OR = 1.061, 95% CI: 1.002-1.125) after adjustment of cholecystectomy.
CONCLUSIONS
The study indicated that cholecystectomy might not increase the risk of CRC, but such a conclusion needs further proving by clinical equivalence. Additionally, it might increase the risk of IBS, which should be paid attention to in clinical practice.
Humans
;
Mendelian Randomization Analysis
;
Irritable Bowel Syndrome
;
Colorectal Neoplasms/genetics*
;
Cholelithiasis/complications*
;
Cholecystectomy/adverse effects*
;
Genome-Wide Association Study
;
Polymorphism, Single Nucleotide
5.Identification of novel candidate genes in East Asian COPD patients by the functional summary-based imputation and the unified test for molecular signatures: a transcriptome-wide association study.
Ye TIAN ; Shufang SHAN ; Qixue BAO ; Siquan ZHOU ; Xia JIANG ; Mengqiao WANG ; Shu YIN ; Jingyuan XIONG ; Guo CHENG
Chinese Medical Journal 2023;136(13):1612-1614
6.METTL1 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study.
Linqing DENG ; Ruixi HUA ; Zhengtao ZHANG ; Jinhong ZHU ; Jiao ZHANG ; Jiwen CHENG ; Suhong LI ; Haixia ZHOU ; Guochang LIU ; Jing HE ; Wen FU
Chinese Medical Journal 2023;136(14):1750-1752
7.Construction and evaluation of the functional polygenic risk score for gastric cancer in a prospective cohort of the European population.
Yuanliang GU ; Caiwang YAN ; Tianpei WANG ; Beiping HU ; Meng ZHU ; Guangfu JIN
Chinese Medical Journal 2023;136(14):1671-1679
BACKGROUND:
A polygenic risk score (PRS) derived from 112 single-nucleotide polymorphisms (SNPs) for gastric cancer has been reported in Chinese populations (PRS-112). However, its performance in other populations is unknown. A functional PRS (fPRS) using functional SNPs (fSNPs) may improve the generalizability of the PRS across populations with distinct ethnicities.
METHODS:
We performed functional annotations on SNPs in strong linkage disequilibrium (LD) with the 112 previously reported SNPs to identify fSNPs that affect protein-coding or transcriptional regulation. Subsequently, we constructed an fPRS based on the fSNPs by using the LDpred2-infinitesimal model and then analyzed the performance of the PRS-112 and fPRS in the risk prediction of gastric cancer in 457,521 European participants of the UK Biobank cohort. Finally, the performance of the fPRS in combination with lifestyle factors were evaluated in predicting the risk of gastric cancer.
RESULTS:
During 4,582,045 person-years of follow-up with a total of 623 incident gastric cancer cases, we found no significant association between the PRS-112 and gastric cancer risk in the European population (hazard ratio [HR] = 1.00 [95% confidence interval (CI) 0.93-1.09], P = 0.846). We identified 125 fSNPs, including seven deleterious protein-coding SNPs and 118 regulatory non-coding SNPs, and used them to construct the fPRS-125. Our result showed that the fPRS-125 was significantly associated with gastric cancer risk (HR = 1.11 [95% CI, 1.03-1.20], P = 0.009). Compared to participants with a low fPRS-125 (bottom quintile), those with a high fPRS-125 (top quintile) had a higher risk of incident gastric cancer (HR = 1.43 [95% CI, 1.12-1.84], P = 0.005). Moreover, we observed that participants with both an unfavorable lifestyle and a high genetic risk had the highest risk of incident gastric cancer (HR = 4.99 [95% CI, 1.55-16.10], P = 0.007) compared to those with both a favorable lifestyle and a low genetic risk.
CONCLUSION
These results indicate that the fPRS-125 derived from fSNPs may act as an indicator to measure the genetic risk of gastric cancer in the European population.
Humans
;
Prospective Studies
;
Stomach Neoplasms/genetics*
;
Genetic Predisposition to Disease/genetics*
;
Risk Factors
;
Multifactorial Inheritance/genetics*
;
Polymorphism, Single Nucleotide/genetics*
;
Genome-Wide Association Study
8.PAI-1 genetic polymorphisms influence septic patients' outcomes by regulating neutrophil activity.
Shaowei JIANG ; Yang WANG ; Liang CHEN ; Honghua MU ; Connor MEANEY ; Yiwen FAN ; Janesh PILLAY ; Hairong WANG ; Jincheng ZHANG ; Shuming PAN ; Chengjin GAO
Chinese Medical Journal 2023;136(16):1959-1966
BACKGROUND:
Plasminogen activator inhibitor-1 (PAI-1) plays an important role in the pathophysiology of sepsis, but the exact mechanism remains debatable. In this study, we investigated the associations among the serum levels of PAI-1, the incidence of 4G/5G promoter PAI-1 gene polymorphisms, immunological indicators, and clinical outcomes in septic patients.
METHODS:
A total of 181 patients aged 18-80 years with sepsis between November 2016 and August 2018 in the intensive care unit in the Xinhua Hospital were recruited in this retrospective study, with 28-day mortality as the primary outcome. The initial serum level of PAI-1 and the presence of rs1799768 single nucleotide polymorphisms (SNPs) were examined. Univariate logistic regression and multivariate analyses were performed to determine the factors associated with different genotypes of PAI-1, serum level of PAI-1, and 28-day mortality.
RESULTS:
The logistic analysis suggested that a high serum level of PAI-1 was associated with the rs1799768 SNP of PAI-1 (4G/4G and 4G/5G) (Odds ratio [OR]: 2.49; 95% confidence interval [CI]: 1.09, 5.68). Furthermore, a high serum level of PAI-1 strongly influenced 28-day mortality (OR 3.36; 95% CI 1.51, 7.49). The expression and activation of neutrophils (OR 0.96; 95% CI 0.93, 0.99), as well as the changes in the expression patterns of cytokines and chemokine-associated neutrophils (OR: 1.00; 95% CI: 1.00, 1.00), were both regulated by the genotype of PAI-1.
CONCLUSIONS
Genetic polymorphisms of PAI-1 can influence the serum levels of PAI-1, which might contribute to mortality by affecting neutrophil activity. Thus, patients with severe sepsis might clinically benefit from enhanced neutrophil clearance and the resolution of inflammation via the regulation of PAI-1 expression and activity.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Humans
;
Middle Aged
;
Young Adult
;
Genotype
;
Neutrophils
;
Plasminogen Activator Inhibitor 1/genetics*
;
Polymorphism, Single Nucleotide/genetics*
;
Retrospective Studies
;
Sepsis/genetics*
9.Leukocyte Telomere Length and Lacunar Stroke: A Mendelian Randomization Study.
Mei Juan DANG ; Tao LI ; Li Li ZHAO ; Ye LI ; Xiao Ya WANG ; Yu Lun WU ; Jia Liang LU ; Zi Wei LU ; Yang YANG ; Yu Xuan FENG ; He Ying WANG ; Ya Ting JIAN ; Song Hua FAN ; Yu JIANG ; Gui Lian ZHANG
Biomedical and Environmental Sciences 2023;36(4):367-370
10.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage

Result Analysis
Print
Save
E-mail