1.Biodegradation of polyethylene terephthalate: a review.
Yufeng JIN ; Jiarong QIU ; Liangqing ZHANG ; Menglei ZHU
Chinese Journal of Biotechnology 2023;39(11):4445-4462
Plastics are widely used in human daily life, which bring great convenience. Nevertheless, the disposal of a large amount of plastic wastes also brings great pressure to the environment. Polyethylene terephthalate (PET) is a polymer thermoplastic material produced from petroleum. It has become one of the most commonly used plastics in the world due to its durability, high transparency, light weight and other characteristics. PET can exist in nature for a long time due to its complex structure and the difficulty in degradation, which causes serious pollution to the global ecological environment, and threatens human health. The degradation of PET wastes has since become one of the global challenges. Compared with physical and chemical methods, biodegradation is the greenest way for treating PET wastes. This review summarizes the recent advances on PET biodegradation including microbial and enzymatic degradation of PET, biodegradation pathway, biodegradation mechanisms, and molecular modification of PET-degrading enzymes. In addition, the prospect for achieveing efficient degradation of PET, searching and improving microorganisms or enzymes that can degrade PET of high crystallinity are presented, with the aimto facilitate the development, application and molecular modification of PET biodegradation microorganisms or enzymes.
Humans
;
Polyethylene Terephthalates/metabolism*
;
Polymers
;
Biodegradation, Environmental
;
Petroleum
2.Commentary: polymer binding modules accelerate enzymatic degradation of poly(ethylene terephthalate).
Yi LU ; Ruizhi HAN ; Ulrich SCHWANEBERG ; Yu JI
Chinese Journal of Biotechnology 2023;39(5):1883-1888
The large scale production and indiscriminate use of plastics led to serious environmental pollution. To reduce the negative effects of plastics waste on the environment, an approach of enzymatic degradation was put forward to catalyze plastics degradation. Protein engineering strategies have been applied to improve the plastics degrading enzyme properties such as activity and thermal stability. In addition, polymer binding modules were found to accelerate the enzymatic degradation of plastics. In this article, we introduced a recent work published in Chem Catalysis, which studied the role of binding modules in enzymatic hydrolysis of poly(ethylene terephthalate) (PET) at high-solids loadings. Graham et al. found that binding modules accelerated PET enzymatic degradation at low PET loading (< 10 wt%) and the enhanced degradation cannot be observed at high PET loading (10 wt%-20 wt%). This work is beneficial for the industrial application of polymer binding modules in plastics degradation.
Polyethylene Terephthalates/metabolism*
;
Polymers
;
Plastics
;
Ethylenes
3.Advances in biodegradation of polyolefin plastics.
Yingbo YUAN ; Wenkai ZHOU ; Quanfeng LIANG ; Longyang DIAN ; Tianyuan SU ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1930-1948
Polyolefin plastics are a group of polymers with C-C backbone that have been widely used in various areas of daily life. Due to their stable chemical properties and poor biodegradability, polyolefin plastic waste continues to accumulate worldwide, causing serious environmental pollution and ecological crises. In recent years, biological degradation of polyolefin plastics has attracted considerable attention. The abundant microbial resources in the nature offer the possibility of biodegradation of polyolefin plastic waste, and microorganisms capable of degrading polyolefin have been reported. This review summarizes the research progress on the biodegradation microbial resources and the biodegradation mechanisms of polyolefin plastics, presents the current challenges in the biodegradation of polyolefin plastics, and provides an outlook on future research directions.
Plastics/metabolism*
;
Polymers/metabolism*
;
Polyenes
;
Biodegradation, Environmental
4.Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics.
Rui ZHI ; Yanbo LU ; Min WANG ; Guohui LI ; Yu DENG
Chinese Journal of Biotechnology 2023;39(5):2081-2094
Plastics are one of the most important polymers with huge global demand. However, the downsides of this polymer are that it is difficult to degrade, which causes huge pollution. The environmental-friendly bio-degradable plastics therefore could be an alternative and eventually fulfill the ever-growing demand from every aspect of the society. One of the building blocks of bio-degradable plastics is dicarboxylic acids, which have excellent biodegradability and numerous industrial applications. More importantly, dicarboxylic acid can be biologically synthesized. Herein, this review discusses the recent advance on the biosynthesis routes and metabolic engineering strategies of some of the typical dicarboxylic acids, in hope that it will help to provide inspiration to further efforts on the biosynthesis of dicarboxylic acids.
Biodegradable Plastics
;
Dicarboxylic Acids
;
Polymers/metabolism*
;
Biodegradation, Environmental
;
Metabolic Engineering
5.Agrobacterium tumefaciens-mediated transformation of Aureobasidium pullulans and high-efficient screening for polymalic acid producing strain.
Guangwei TU ; Yongkang WANG ; Jun FENG ; Xiaorong LI ; Meijin GUO ; Xiang ZOU
Chinese Journal of Biotechnology 2015;31(7):1063-1072
To develop a genetic transformation method of Aureobasidium pullulans and T-DNA insertion for high-efficient screening of polymalic acid (PMA) producing strain. Agrobacterium tumefaciens-AGL1, containing the selection genes encoding hygromycin B phosphotase or phosphinothricin acetyltranferase, was used to transform Aureobasidium pullulans CCTCC M2012223 and transformants were confirmed by colony PCR method. Transferred DNA (T-DNA) insertional mutants were cultured in microwell plate, and screened for high-titer PMA producing strain according to the pH response model. DNA walking was used to detect the insertion sites in the mutant. Results show that the selection markers could stably generated in the transformants, and 80 to 120 transformants could be found per 10(7) single cells. A high-titer PMA mutant H27 was obtained, giving a good PMA production caused by the disruption of phosphoglycerate mutase, that increased by 24.5% compared with the control. Agrobacterium tumefaciens-mediated transformation and high-efficient screening method were successfully developed, which will be helpful for genetic transformation of Aureobasidium pullulans and its functional genes discovery.
Agrobacterium tumefaciens
;
Ascomycota
;
genetics
;
metabolism
;
DNA, Bacterial
;
Malates
;
metabolism
;
Polymerase Chain Reaction
;
Polymers
;
metabolism
;
Transformation, Genetic
6.Progress in the study of core-crosslinked polymeric micelles in drug delivery system.
Jing-Mou YU ; Jia-Zhong WU ; Xin-Shi WANG ; Yi JIN
Acta Pharmaceutica Sinica 2014;49(2):183-189
The core-crosslinked polymeric micelles were used as a new drug delivery system, which can decrease the premature drug release in blood circulation, improve the stability of the micelles, and effectively transport the drug into the therapy sites. Then the drug bioavailability increased further, while the side effect reduced. Most drugs were physically entrapped or chemically covalent with the polymer in the internals of micelles. Based on the various constitutions and properties of polymeric micelles as well as the special characteristics of body microenvironment, the environment-responsive or active targeting core-crosslinked micelles were designed and prepared. As a result, the drug controlled release behavior was obtained. In the present paper, the research progress of all kinds of core-crosslinked micelles which were published in recent years is introduced. Moreover, the characteristic and application prospect of these micelles in drug delivery system are analyzed and summarized.
Animals
;
Antineoplastic Agents
;
administration & dosage
;
chemistry
;
therapeutic use
;
Cross-Linking Reagents
;
chemistry
;
metabolism
;
Drug Carriers
;
chemistry
;
metabolism
;
Humans
;
Micelles
;
Molecular Structure
;
Neoplasms
;
drug therapy
;
Particle Size
;
Pharmaceutical Preparations
;
administration & dosage
;
Polyethylene Glycols
;
chemistry
;
metabolism
;
Polymers
;
chemistry
;
metabolism
7.Preparation of PLLA/bpV(pic) microspheres and their effect on nerve cells.
Qiang LIN ; Hai-yun CHEN ; Hao-shen LI ; Yang-ting CAI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):76-80
In this study, we prepared PLLA/bpV(pic) microspheres, a bpV(pic) controlled release system and examined their ability to protect nerve cells and promote axonal growth. PLLA microspheres were prepared by employing the o/w single emulsification-evaporation technique. Neural stem cells and dorsal root ganglia were divided into 3 groups in terms of the treatment they received: a routine medium group (cultured in DMEM), a PLLA microsphere group (DMEM containing PLLA microspheres alone) and a PLLA/bpV(pic) group [DMEM containing PLLA/bpV(pic) microspheres]. The effects of PLLA/bpV(pic) microspheres were evaluated by the live-dead test and measurement of axonal length. Our results showed that PLLA/bpV(pic) granulation rate was (88.2±5.6)%; particle size was (16.8±3.1)%, drug loading was (4.05±0.3)%; encapsulation efficiency was (48.5±1.8)%. The release time lasted for 30 days. In PLLA/bpV(pic) microsphere group, the cell survival rate was (95.2 ±4.77)%, and the length of dorsal root ganglion (DRG) was 718±95 μm, which were all significantly greater than those in ordinary routine medium group and PLLA microsphere group. This preliminary test results showed the PLLA/bpV(pic) microspheres were successfully prepared and they could promote the survival and growth of neural cells in DRG.
Animals
;
Axons
;
drug effects
;
physiology
;
Cells, Cultured
;
Delayed-Action Preparations
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Drug Compounding
;
Female
;
Ganglia, Spinal
;
drug effects
;
metabolism
;
physiology
;
Immunohistochemistry
;
Lactic Acid
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Microscopy, Electron
;
Microspheres
;
Neural Stem Cells
;
drug effects
;
physiology
;
Neurofilament Proteins
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
Organometallic Compounds
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Polyesters
;
Polymers
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Pregnancy
;
Rats
8.Trends in polymer-grade L-lactic acid fermentation by non-food biomass.
Bo YU ; Yan ZENG ; Xu JIANG ; Limin WANG ; Yanhe MA
Chinese Journal of Biotechnology 2013;29(4):411-421
Lactic acid has a wide range of uses in the chemical, pharmaceutical and food industry. With rapid development of poly (lactic acid) industry, the demand for polymer-grade L-lactic acid is continuously increasing. Developing low-cost, non-food-biomass-lactic-acid fermentation process and the fermentation-separation coupled technology are trends to reduce polymer-grade L-lactic acid production cost. This review summarized the most recent advances in low-cost L-lactic acid fermentation based on the use of non-food biomass, followed by addressing the key issue that might be strategically important for future development of polymer-grade L-lactic acid production in industry.
Biomass
;
Biotechnology
;
trends
;
Cellulose
;
metabolism
;
Fermentation
;
Insulin
;
metabolism
;
Lactic Acid
;
metabolism
;
Manihot
;
metabolism
;
Polymers
;
metabolism
9.Construction of polyhydroxybutyrate pathway in Klebsiella pneumoniae.
Xiaochen GUO ; Hongjuan LIU ; Yanping WANG ; Jian'an ZHANG ; Dehua LIU
Chinese Journal of Biotechnology 2013;29(10):1504-1514
1,3-propanediol production with the byproduct of biodiesel production is important to increase the economic benefit of biodiesel industry. Accumulation of 3-hydroxypropionaldehyde is one of the key problems in the 1,3-propanediol fermentation process, leading to the cell death and the fermentation abnormal ceasing. Different from the traditional way of reducing the accumulation of the 3-hydroxypropionaldehyde, we introduced the polyhydroxybutyrate pathway into the Klebsiella pneumoniae for the first time to enhance the tolerance of K. pneumoniae to 3-hydroxypropionaldehyde, at the same time, to improve the 1,3-propanediol production. Plasmid pDK containing phbC, phbA, phbB gene was constructed and transformed into K. pneumoniae successfully. PHB was detected in the engineered K. pneumoniae after IPTG induction and its content enhanced with the IPTG concentration increasing. The optimized IPTG concentration was 0.5 mmol/L. The constructed K. pneumoniae could produce 1,3-propanediol normally, at the same time accumulate polyhydroxybutyrate. With the constructed strain, the fermentation proceeds normally with the initial glucose was 70 g/L which the wild type strain stopped growing and the fermentation was ceasing; 1,3-propanediol concentration and yield reached 31.3 g/L and 43.9% at 72 h. Our work is helpful for the deep understanding of 1,3-propanediol metabolic mechanism of Klebsiella pneumoniae, and also provides a new way for strain optimization of Klebsiella pneumoniae.
Genetic Engineering
;
methods
;
Hydroxybutyrates
;
metabolism
;
Industrial Microbiology
;
methods
;
Klebsiella pneumoniae
;
genetics
;
metabolism
;
Polymers
;
metabolism
;
Propylene Glycols
;
metabolism
10.Progress in the application of conducting polymer in glucose biosensor.
Cang WANG ; Dajing CHEN ; Liling CHENG ; Yuquan CHEN ; Wei CHEN ; Min PAN
Journal of Biomedical Engineering 2013;30(5):1112-1116
Conducting polymers have stable long-chain structure and good electrical conductivity. They have been used in various types of biosensors because of their excellent characteristics of the immobilization and electrical signal transmission. In recent years, researchers mainly study on improving its micro-nano structures and its signal conductivity to enhance its effect on the enzyme immobilization and signal conductive properties. This paper reviews firstly the application of conducting polymer on enzyme-immobilized glucose biosensor and the new technologies and methods in this field. This paper also points out the future application of conducting polymers in enzyme immobilization and biosensor preparation areas.
Biosensing Techniques
;
methods
;
trends
;
Blood Glucose
;
metabolism
;
Electric Conductivity
;
Enzymes, Immobilized
;
Glucose Oxidase
;
metabolism
;
Nanostructures
;
Polymers
;
chemistry

Result Analysis
Print
Save
E-mail