1.Study on bone mesenchymal stem cells transfected by polyethylene glycol/bone morphogenetic protein-2.
Li-Feng DING ; Gang ZHENG ; Jun YANG ; Zhen-Dong ZHOU ; Jian-Jun LI
China Journal of Orthopaedics and Traumatology 2014;27(1):48-53
OBJECTIVEPolyethylene glycol/bone morphogenetic protein-2 (PEG/BMP-2) nanoparticles were transfected into Rabbit bone mesenchymal stem cells (rBMSCs) and the expression of BMP-2 was detected.
METHODSDissociated rBMSCs were primarily cultured in vitro and BMP-2 gene was transfected into rBMSCs by PEG/BMP-2 nanoparticals and lipofectamine, respectively. The efficiency of transfection was detected by flow cytometry and the expression of BMP-2 was detected by Western Blot and real time RT-PCR.
RESULTSPEG/BMP-2 nanoparticals were successfully synthesized and transfected into rBMSCs. Compared with the lipofectamine transfection group, PEG/BMP-2 transfection group had higher efficiency and higher BMP-2 expression.
CONCLUSIONPEG/BMP-2 nanoparticals transfected rBMSCs highly expressed BMP-2,which provided novel strategies for the treatment of bone defect.
Animals ; Bone Diseases ; genetics ; therapy ; Bone Morphogenetic Protein 2 ; chemistry ; genetics ; metabolism ; Bone and Bones ; cytology ; Gene Expression Regulation ; Humans ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Nanoparticles ; chemistry ; Polyethylene Glycols ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Rabbits ; Transfection ; methods
2.Progress in the study of core-crosslinked polymeric micelles in drug delivery system.
Jing-Mou YU ; Jia-Zhong WU ; Xin-Shi WANG ; Yi JIN
Acta Pharmaceutica Sinica 2014;49(2):183-189
The core-crosslinked polymeric micelles were used as a new drug delivery system, which can decrease the premature drug release in blood circulation, improve the stability of the micelles, and effectively transport the drug into the therapy sites. Then the drug bioavailability increased further, while the side effect reduced. Most drugs were physically entrapped or chemically covalent with the polymer in the internals of micelles. Based on the various constitutions and properties of polymeric micelles as well as the special characteristics of body microenvironment, the environment-responsive or active targeting core-crosslinked micelles were designed and prepared. As a result, the drug controlled release behavior was obtained. In the present paper, the research progress of all kinds of core-crosslinked micelles which were published in recent years is introduced. Moreover, the characteristic and application prospect of these micelles in drug delivery system are analyzed and summarized.
Animals
;
Antineoplastic Agents
;
administration & dosage
;
chemistry
;
therapeutic use
;
Cross-Linking Reagents
;
chemistry
;
metabolism
;
Drug Carriers
;
chemistry
;
metabolism
;
Humans
;
Micelles
;
Molecular Structure
;
Neoplasms
;
drug therapy
;
Particle Size
;
Pharmaceutical Preparations
;
administration & dosage
;
Polyethylene Glycols
;
chemistry
;
metabolism
;
Polymers
;
chemistry
;
metabolism
3.Modification by wheat germ agglutinin delays the ocular elimination of liposome.
Wen-Jian ZHANG ; Dong-Xiao YANG ; Ling-Lin FENG ; Fei WANG ; Gang WEI ; Wei-Yue LU
Acta Pharmaceutica Sinica 2014;49(4):543-549
The purpose of this study is to explore the feasibility of wheat germ agglutinin (WGA) modified liposome as a vehicle for ophthalmic administration. Liposome loaded with 5-carboxyfluorescein (FAM) was prepared by lipid film hydration method. WGA was thiolated and then conjugated to the surface of the liposome via polyethylene glycol linker to constitute the WGA-modified and FAM-loaded liposome (WGA-LS/FAM). The amount of thiol groups on each WGA molecule was determined, and the bioactivity of WGA was estimated after it was modified to the surface of liposome. The physical and chemical features of the WGA-modified liposome were characterized and the ocular bioadhesive performance was evaluated in rats. The result showed that each thiolated WGA molecule was conjugated with 1.32 thiol groups. WGA-LS/FAM had a mean size of (97.40 +/- 1.39) nm, with a polydispersity index of 0.23 +/- 0.01. The entrapment efficacy of FAM was about (2.95 +/- 0.21)%, and only 4% of FAM leaked out of the liposome in 24 h. Erythrocyte agglutination test indicated that after modification WGA preserved the binding activity to glycoprotein. The in vivo ocular elimination of WGA-LS/FAM fitted first-order kinetics, and the elimination rate was significantly slower than that of the unmodified liposome, demonstrating WGA-modified liposome is bioadhesive and suitable for ophthalmic administration.
Absorption, Physicochemical
;
Adhesiveness
;
Administration, Ophthalmic
;
Animals
;
Drug Carriers
;
Eye
;
metabolism
;
Fluoresceins
;
chemistry
;
Liposomes
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Male
;
Particle Size
;
Polyethylene Glycols
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Wheat Germ Agglutinins
;
administration & dosage
;
chemistry
;
pharmacokinetics
4.Preparation, characterization and Calu-3 cellular uptake of three kinds of poly(b-benzyl-L-amino)block-poly(ethylene glycol) nanoparticles.
Yin ZHOU ; Li-Na LU ; Xue XIN ; Dong-Feng HUO ; Hong-Bing WU ; Ming-Feng QIU
Acta Pharmaceutica Sinica 2013;48(4):560-565
The aim of this paper is to compare the cytotoxicity and cellular uptake efficiency of three kinds of poly(b-benzyl-L-amino) block-poly(ethylene glycol) nanoparticles (PXA-PEG-NPs) using Calu-3 cells, and select one as a nasal drug delivery vector for curcumin (Cur). Poly(gamma-benzyl-L-glutamate) block-poly(ethylene glycol) nanoparticles (PBLG-PEG-NPs), poly(gamma-benzyl-L-lysine) block-poly(ethyleneglycol) nanoparticles (PZLL-PEG-NPs) and poly(gamma-benzyl-L-aspartate) block-poly(ethylene glycol) nanoparticles (PBLA-PEG-NPs) were prepared by emulsion-solvent evaporation method. MTT assays were used to evaluate the cytotoxicity of PXA-PEG-NPs against Calu-3 cells. The cellular uptake of nanoparticles was visualized by an inverted fluorescence microscope and quantified by a flow cytometer. The results indicated that even at high concentration of 2 mg x mL(-1) the three nanoparticles had no cytotoxicity on Calu-3 cells. Compared to the curcumin solution, the three curcumin-loaded PXA-PEG-NPs showed significantly higher cellular uptake efficiency on Calu-3 cells (at equal concentration of curcumin with 5 microg x mL(-1) Cur solution), PBLG-PEG-NPs group was the highest. The cellular uptake increased with incubation time, and has positive correlation with nanoparticle concentration. In brief, PXA-PEG-NPs are conducive to delivery Cur into cells, and PBLG-PEG-NPs might be provided as a good nasal drug delivery carrier.
Adenocarcinoma
;
metabolism
;
pathology
;
Administration, Intranasal
;
Anti-Inflammatory Agents, Non-Steroidal
;
administration & dosage
;
metabolism
;
Aspartic Acid
;
chemistry
;
toxicity
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Curcumin
;
administration & dosage
;
metabolism
;
Drug Carriers
;
Ethylene Glycol
;
chemistry
;
toxicity
;
Humans
;
Lung Neoplasms
;
metabolism
;
pathology
;
Lysine
;
chemistry
;
toxicity
;
Nanoparticles
;
Particle Size
;
Polyethylene Glycols
;
chemistry
;
toxicity
;
Polyglutamic Acid
;
analogs & derivatives
;
chemistry
;
toxicity
5.Transport of mPEG-PLGA nanoparticles across the rat nasal mucosa.
Jun-Teng WANG ; Dong-Hai LIN ; Li-Fang QIN ; Zhen WEN ; Gui-Ping GUO
Acta Pharmaceutica Sinica 2013;48(5):752-758
To investigate the effects of particle size, mPEG molecular weight, coating density and zeta potential of monomethoxyl poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles on their transportation across the rat nasal mucosa, mPEG-PLGA-NPs with different mPEG molecular weights (M(r) 1 000, 2 000) and coating density (0, 5%, 10%, 15%) and chitosan coated PLGA-NP, which loaded coumarin-6 as fluorescent marker, were prepared with the nanoprecipitation method and emulsion-solvent evaporation method, and determine their particle size, zeta potential, the efficiency of fluorescent labeling, in vitro leakage rate and the stability with the lysozyme were determined. The effects of physical and chemical properties on the transmucosal transport of the fluorescent nanoparticles were investigated by confocal laser scanning microscopy (CLSM). The result showed that the size of nanoparticles prepared with nanoprecipitation method varied between 120 and 200 nm; the size of nanoparticles prepared with emulsion-solvent evaporation method varied between 420 and 450 nm. Nanoparticles dispersed uniformly; the zeta potential of PLGA-NPs was negative; mPEG-PLGA-NPs was close to neutral; chitosan coated PLGA-NPs was positive; and the efficiency of fluorescent labeling were higher than 80%. In vitro leak was less than 5% within 4 h and nanoparticles were basically stable with lysozyme. The CLSM results show that the transportation efficiency of mPEG-PLGA-NPs with a high PEG coating density and high mPEG molecular weight was significantly higher than that of uncoated PLGA nanoparticles and also that of chitosan coated PLGA-NPs (P < 0.05). The hydrophilcity, zeta potential and particle size of nanoparticles play important roles on the efficiency of mPEG-PLGA nanoparticles to transport across the rat nasal mucosa.
Animals
;
Biological Transport
;
Chitosan
;
chemistry
;
Drug Carriers
;
chemistry
;
Female
;
Male
;
Microscopy, Confocal
;
Molecular Weight
;
Nanoparticles
;
Nasal Mucosa
;
metabolism
;
Particle Size
;
Polyesters
;
chemistry
;
pharmacokinetics
;
Polyethylene Glycols
;
chemistry
;
pharmacokinetics
;
Rats
;
Rats, Sprague-Dawley
6.Autoantibodies with Mimicking Specificity Detected by the Dilution Technique in Patients with Warm Autoantibodies.
Min Joong JANG ; Duck CHO ; Kyoung Un PARK ; Mark Harris YAZER ; Myung Geun SHIN ; Jong Hee SHIN ; Soon Pal SUH ; Dong Wook RYANG
Annals of Laboratory Medicine 2013;33(5):343-348
BACKGROUND: The aim of this study was to investigate the frequency of autoantibodies with mimicking specificity by using the dilution technique, to assess the usefulness of the combination of the dilution technique and red blood cell (RBC) phenotyping, and to establish a pre-transfusion testing algorithm in patients with warm autoantibodies. METHODS: Serum samples from 71 patients with warm autoantibodies were tested using the dilution technique. Among them, 25 samples were adsorbed with allogeneic ZZAP (a combination of dithiothreitol and enzyme) or polyethylene glycol (PEG) and their RBC phenotypes were determined. Thirty-nine patients were transfused with our pre-transfusion testing algorithm using a combination of dilution technique and RBC phenotyping. RESULTS: Autoantibodies with mimicking specificity were detected by the dilution technique in 26.8% (19/71) of the patients and most of them were directed against Rh system antigens. The agreement of the results obtained with the dilution technique in combination with RBC phenotyping and those from ZZAP or PEG adsorption was 100% (18/18) in patients who have autoantibodies with mimicking specificity and/or alloantibodies. No clinical symptoms indicating severe acute or delayed hemolytic transfusion reactions were reported in the 39 patients transfused with our pre-transfusion testing algorithm. CONCLUSIONS: Autoantibodies with mimicking specificity detected by the dilution technique in patients with warm autoantibodies are relatively frequent, can be discriminated from alloantibodies by employing a combination of dilution technique and RBC phenotyping, and might not appear to cause severe acute or delayed hemolytic transfusion reactions.
Adolescent
;
Adsorption
;
Adult
;
Aged
;
Aged, 80 and over
;
Algorithms
;
Antibody Specificity
;
Autoantibodies/*blood
;
Child
;
Erythrocytes/cytology/metabolism
;
Female
;
Humans
;
*Indicator Dilution Techniques
;
Isoantibodies/blood
;
Male
;
Middle Aged
;
Phenotype
;
Polyethylene Glycols/chemistry
;
Temperature
;
Young Adult
7.Transport of PLGA nanoparticles across Caco-2/HT29-MTX co-cultured cells.
Zhen WEN ; Gang LI ; Dong-Hai LIN ; Jun-Teng WANG ; Li-Fang QIN ; Gui-Ping GUO
Acta Pharmaceutica Sinica 2013;48(12):1829-1835
The present study is to establish Caco-2/HT29-MTX co-cultured cells and investigate the transport capability of PLGA nanoparticles with different surface chemical properties across Caco-2/HT29-MTX co-cultured cells. PLGA-NPs, mPEG-PLGA-NPs and chitosan coated PLGA-NPs were prepared by nanoprecipitation method using poly(lactic-co-glycolic acid) as carrier material with surface modified by methoxy poly(ethylene glycol) and chitosan. The particle size and zeta potential of nanoparticles were measured by dynamic light scattering. Coumarin 6 was used as a fluorescent marker in the transport of nanoparticles investigated by confocal laser scanning microscopy. The transport of furanodiene (FDE) loaded nanoparticles was quantitively determined by high performance liquid chromatography. Colchicine and nocodazole were used in the transport study to explore the involved endocytosis mechanisms of nanoparticles. Distribution of the tight junction proteins ZO-1 was also analyzed by immunofluorescence staining. The results showed that the nanoparticles dispersed uniformly. The zeta potential of PLGA-NPs was negative, the mPEG-PLGA-NPs was close to neutral and the CS-PLGA-NPs was positive. The entrapment efficiency of FDE in all nanoparticles was higher than 75%. The transport capability of mPEG-PLGA-NPs across Caco-2/HT29-MTX co-cultured cells was higher than that of PLGA-NPs and CS-PLGA-NPs. Colchicine and nocodazole could significantly decrease the transport amount of nanoparticles. mPEG-PLGA-NPs could obviously reduce the distribution of ZO-1 protein than PLGA-NPs and CS-PLGA-NPs. The transport mechanism of PLGA-NPs and mPEG-PLGA-NPs were indicated to be a combination of endocytosis and paracellular way, while CS-PLGA-NPs mainly relied on the endocytosis way. PEG coating could shield the surface charge and enhance the hydrophilicity of PLGA nanoparticles, which leads mPEG-PLGA-NPs to possess higher anti-adhesion activity. As a result, mPEG-PLGA-NPs could penetrate the mucus layer rapidly and transport across Caco-2/HT29-MTX co-cultured cells.
Biological Transport
;
Caco-2 Cells
;
Chitosan
;
chemistry
;
Coated Materials, Biocompatible
;
chemistry
;
Coculture Techniques
;
Drug Carriers
;
Furans
;
administration & dosage
;
chemistry
;
metabolism
;
HT29 Cells
;
Heterocyclic Compounds, 2-Ring
;
administration & dosage
;
chemistry
;
metabolism
;
Humans
;
Lactic Acid
;
chemistry
;
Nanoparticles
;
Particle Size
;
Polyethylene Glycols
;
chemistry
;
Polyglycolic Acid
;
chemistry
;
Zonula Occludens-1 Protein
;
metabolism
8.Protective effects of PEG modified recombinant cytoglobin on acute liver injury in mice.
Zhaofa LI ; Xiaoying DENG ; Jiajia XU ; Wenchang LIAN
Chinese Journal of Biotechnology 2012;28(10):1227-1235
To investigate the protective effect of polyethylene glycol (PEG) modified recombinant cytoglobin (PEG-rCygb) on acute liver damage in mice. The acute liver injury model of KM mice was induced by CCl4 and then treated with PEG-rCygb, The liver and blood samples were collected for biochemical and histopathological analysis. The results showed that PEG-rCygb reduced the liver mass index and decreased significantly the levels of alanine amiotransferase (AST) and aspartate transaminase (ALT) in mouse serum. In liver tissues, the content of malondialdehyde (MDA) was decreased, whereas the content of glutathione (GSH) was increased in PEG-rCygb treated group. PEG-rCygb also elevated the activities of total super oxidedismutase (T-SOD) and catalase (CAT) in liver tissues. HE staining of liver tissue slices revealed that PEG-rCygb relieved fatty degeneration of liver, decreased inflammatory factors and reduced liver cell injury. Further in vitro experiments indicated that the protective effects of PEG-rCygb on hepatic stellate cell (HSC) against H2O2 were enhanced compared with that of rCygb. All results indicated that the PEG-rCygb promoted oxygen free radical scavenging ability and prevented acute liver injury in KM mice induced by CCl4.
Animals
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury
;
prevention & control
;
Free Radical Scavengers
;
metabolism
;
Globins
;
biosynthesis
;
genetics
;
therapeutic use
;
Liver
;
enzymology
;
Male
;
Mice
;
Polyethylene Glycols
;
chemistry
;
Protective Agents
;
therapeutic use
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
therapeutic use
9.Removal of oral Prevotella intermedia Endotoxin by octyl phenyl polyoxyethylene ether extraction method.
Ai-wu WANG ; Yan LIU ; Kong-xin HU ; Qian CHENG
Chinese Journal of Stomatology 2012;47(12):725-729
OBJECTIVETo investigate an effective purification method for removing endotoxin from Prevotella intermedia.
METHODSThe main protein ingredients of bacteria prepared from ammonium sulfate precipitation were further treated with octyl phenyl polyoxyethylene ether (Triton X-114), and then processed at 4°C, 37°C and 25°C. The obtained aqueous phase after at least two more cycle repeated operations was assayed for endotoxin by Western blotting, LAL-clotting method, in vitro cell stimulation and in vivo animal experiments.
RESULTSWestern blotting and LAL-clotting method demonstrated that the reduction in endotoxin level was greater than 99.99% and recovery of the proteins after endotoxin removal was greater than 90% with Triton X-114 treatment for 3 cycles. The cytokines expression level was lower in both in vitro cell stimulation and in vivo animal experiments than in untreated group (P < 0.05).
CONCLUSIONSThe extraction method provides a new choice for endotoxin removal from large volumes of the oral Prevotella intermedia.
Animals ; Bacterial Proteins ; isolation & purification ; Endotoxins ; isolation & purification ; Female ; HEK293 Cells ; Humans ; Interleukin-1alpha ; blood ; Interleukin-6 ; blood ; Interleukin-8 ; metabolism ; Lipopolysaccharides ; pharmacology ; Mice ; Mice, Inbred C57BL ; Polyethylene Glycols ; chemistry ; Prevotella intermedia ; chemistry ; metabolism ; Tumor Necrosis Factor-alpha ; blood
10.Research on Tat peptide-polyethylene glycol modified gelatin-siloxane nanoparticles across the blood-brain barrier.
Xinhua TIAN ; Feng WEI ; Xiaoning LIN ; Wei FENG ; Peng WANG
Journal of Biomedical Engineering 2012;29(3):486-500
Gelatin-siloxane nanoparticles (GS NPs) have been considered to be good gene carrier candidate in vitro, since they have several advantages such as low toxicity, easy preparation and surface modification. In this study, the Tat-PEG-GS NPs were synthesized by the gelatin-siloxane, surface-modified with the polyethylene glycol (H2 N-PEG-COOH) and Tat peptide (KYGRRRQRRKKRGC) and thus constructed a delivery system which can cross BBB (Blood-brain barrier). The morphology, diameter, and zeta potential of Tat-PEG-GS NPs carrier system were characterized with transmission electron microscopy (TEM) and Nano-ZS zetasizer dynamic light scattering Detector. The organ distribution and dynamic evolution localized in the brain parenchyma of Tat-PEG-GS NPs in vivo was investigated with Cri in vivo imaging system and TEM. The obtained Tat-PEG-GS NPs were approximately spherical in shape with average particle size of 150-200 nm and zeta potentials of (32.27 +/- 2.47) mV. In vivo imaging results showed that the accumulation of Tat-PEG-GS NPs was higher in the brain than the accumulation of PEG-GS NPs, but the accumulation of Tat-PEG-GS NPs was lower in the liver than the accumulation of PEG-GS NPs. These differences are statistically significant. The nanocomplex could cross the BBB and reach the neural tissues tested with TEM. The Tat-PEG-GS NPs could cross the BBB and escape the arrest of the reticuloendothelial system (RES), and it would be potential nano-carrier systems for central delivery.
Animals
;
Blood-Brain Barrier
;
metabolism
;
Drug Delivery Systems
;
Female
;
Gelatin
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Male
;
Mice
;
Mice, Nude
;
Nanoparticles
;
chemistry
;
Peptide Fragments
;
chemistry
;
Polyethylene Glycols
;
chemistry
;
Siloxanes
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
tat Gene Products, Human Immunodeficiency Virus
;
chemistry

Result Analysis
Print
Save
E-mail