1.Study on Platelet Adhesion and Aggregation Induced by Gradient Shear Stress Using Microfluidic Chip Technology.
Hai-Dong MA ; Cui HE ; Su-Rong DENG ; Ting-Ting ZHANG ; Yuan LI ; Tian-Cong ZHANG
Journal of Experimental Hematology 2023;31(2):495-502
OBJECTIVE:
To study the effect of gradient shear stress on platelet aggregation by microfluidic chip Technology.
METHODS:
Microfluidic chip was used to simulate 80% fixed stenotic microchannel, and the hydrodynamic behavior of the stenotic microchannel model was analyzed by the finite element analysis module of sollidwork software. Microfluidic chip was used to analyze the adhesion and aggregation behavior of platelets in patients with different diseases, and flow cytometry was used to detect expression of the platelet activation marker CD62p. Aspirin, Tirofiban and protocatechuic acid were used to treat the blood, and the adhesion and aggregation of platelets were observed by fluorescence microscope.
RESULTS:
The gradient fluid shear rate produced by the stenosis model of microfluidic chip could induce platelet aggregation, and the degree of platelet adhesion and aggregation increased with the increase of shear rate within a certain range of shear rate. The effect of platelet aggregation in patients with arterial thrombotic diseases were significantly higher than normal group (P<0.05), and the effect of platelet aggregation in patients with myelodysplastic disease was lower than normal group (P<0.05).
CONCLUSION
The microfluidic chip analysis technology can accurately analyze and evaluate the platelet adhesion and aggregation effects of various thrombotic diseases unde the environment of the shear rate, and is helpful for auxiliary diagnosis of clinical thrombotic diseases.
Humans
;
Microfluidics
;
Platelet Adhesiveness
;
Platelet Aggregation
;
Blood Platelets/metabolism*
;
Platelet Aggregation Inhibitors/pharmacology*
;
Platelet Activation/physiology*
;
Thrombosis
2.Regulation of Mitochondria on Platelet Apoptosis and Activation.
Ying HU ; Li-Li ZHA ; Ke-Sheng DAI
Journal of Experimental Hematology 2023;31(3):816-822
OBJECTIVE:
To explore the regulation of mitochondria on platelet apoptosis and activation, and the relationship between platelet apoptosis and activation.
METHODS:
Platelets were isolated from peripheral venous blood of healthy volunteers. Cyclosporin A (CsA), which has a protective effect on the function of platelet mitochondria, BAPTA, which can chelate calcium ions across membranes in platelets, and NAC, an antioxidant that reduces the level of intracellular reactive oxygen species, were selected for coincubation with washed platelets, respectively. By flow cytometry, platelet aggregator was used to detect the changes of platelet mitochondrial function and platelet activation indexes after different interventions.
RESULTS:
H89, staurosporine, and A23187 led to platelet mitochondrial abnormalities, while CsA could effectively reverse the decline of platelet mitochondrial membrane potential caused by them. Antioxidant NAC could reverse platelet mitochondrial damage correspondingly, and completely reverse platelet shrinkage and phosphatidylserine eversion induced by H89. BAPTA, prostaglandin E1, acetylsalicylic acid and other inhibitors could not reverse the decline of platelet mitochondrial membrane potential.
CONCLUSION
Mitochondrial function plays an important role in platelet apoptosis and activation. Abnormal mitochondrial function causes the imbalance of reduction/oxidation state in platelets, which leads to platelet apoptosis. Platelet apoptosis and activation are independent signal processes.
Humans
;
Blood Platelets/metabolism*
;
Antioxidants/pharmacology*
;
Mitochondria/physiology*
;
Platelet Activation
;
Apoptosis
;
Membrane Potential, Mitochondrial
;
Reactive Oxygen Species/pharmacology*
3.Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome.
Ying LI ; Ming-Qian SUN ; Lei LI ; Ye-Hao ZHANG ; Lan MIAO ; Jian-Xun LIU
Chinese journal of integrative medicine 2022;28(2):99-105
The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.
Blood Platelets
;
Hemostasis
;
Platelet Activation
;
Proteomics
;
Technology
4.Analysis of Differential Proteins Related to Platelet Activation in Patients with Essential Thrombocythemia Based on Label-Free Quantitative Technology.
Yu-Jin LI ; Ju-Ning MA ; Zi-Qin WANG ; Er-Peng YANG ; Ming-Jing WANG ; Jing MING ; De-Hao WANG ; Ji-Cong NIU ; Wei-Yi LIU ; Xiao-Mei HU
Journal of Experimental Hematology 2022;30(3):836-843
OBJECTIVE:
To analysis the specific protein markers of essential thrombocythemia (ET) based on proteomics technology, to explore and verify the differential protein related to platelet activation.
METHODS:
Blood samples were obtained from ET patients and healthy people and a certain protein mass spectrometry was detected using label-free quantitative technology. The proteins relative abundance increased or down-regulated by 1.3 times in the disease group compared with the control group, and the protein abundance in the two groups t test P<0.05 were defined as differential proteins. Bioinformatics analysis of the differential proteins was performed using GO and KEGG. The difference in the average protein abundance between the two groups was analyzed by t test and P<0.05 was considered statistically significant. Differential proteins were selected for verification by parallel reaction monitoring (PRM) technology.
RESULTS:
A total of 140 differential proteins were found, of which 72 were up-regulated and 68 were down-regulated. KEGG enrichment showed that the differential protein expression was related to the platelet activation pathway. The differential proteins related to platelet activation were GPV, COL1A2, GP1bα, COL1A1 and GPVI. Among them, the expressions of GPV, GP1bα and GPVI were up-regulated, and the expressions of COL1A2 and COL1A1 were down-regulated. PRM verification of COL1A1, GP1bα, GPVI and GPV was consistent with LFP proteomics testing.
CONCLUSION
Differential proteins in ET patients are related to platelet activation pathway activation.Differential proteins such as GPV, GPVI, COL1A1 and GP1bα can be used as new targets related to ET platelet activation.
Blood Platelets/metabolism*
;
Humans
;
Platelet Activation
;
Platelet Membrane Glycoproteins/metabolism*
;
Technology
;
Thrombocythemia, Essential
5.Effect of Vitamin D3 to Platelet Activation Mediated by Tumor Cell Culture Medium.
Xu-Ying WANG ; Jin YU ; Rong FU ; Ru YANG ; Ming-Zhen JING
Journal of Experimental Hematology 2021;29(4):1289-1294
OBJECTIVE:
To investigate the effect of vitamin D3 to platelet activation by tumor cell culture medium.
METHODS:
The peripheral blood platelets of BALB/c mice were isolated. The platelets were activated in 4T1 culture fluid for 24 h. The platelets were divided into 7 groups: control group, activation group, 1 nmol/L vitamin D3 group, 10 nmol/L vitamin D3 group, 50 nmol/L vitamin D3 group, 100 nmol/L vitamin D3 group, and positive drug (0.1 μmol/L eptifibatide) group. CCK-8 assay was used to detect the platelet proliferation at 24, 48 and 72 h. Flow cytometry was used to detect the expression of CD61 and CD62p and receptor for advanced glycation end products (RAGE) at 24, 48 and 72 h. ELISA was used to detect the level of platelet-endothelial cell adhesion molecule-1 (PECAM-1) at 24, 48 and 72 h.
RESULTS:
The CD41
CONCLUSION
Vitamin D3 shows antiplatelet effect and can inhibit platelet proliferation and activation.
Animals
;
Blood Platelets
;
Cell Culture Techniques
;
Cholecalciferol/pharmacology*
;
Flow Cytometry
;
Mice
;
Mice, Inbred BALB C
;
P-Selectin
;
Platelet Activation
6.Research progress of change of platelet in blood stasis syndrome and effect of traditional Chinese medicine.
Zi-Yan WANG ; Lei LI ; Jian-Xun LIU ; Hong-Xu MENG ; Lan MIAO ; Ming-Qian SUN ; Ye-Hao ZHANG
China Journal of Chinese Materia Medica 2021;46(20):5201-5209
The traditional Chinese medicine(TCM) syndrome of blood stasis refers to blood stagnation in meridians and viscera, with the main symptoms of pain, mass, bleeding, purple tongue, and unsmooth pulse. Cardiovascular and cerebrovascular diseases are among the major chronic diseases seriously harming the health of the Chinese. Among the coronary heart disease and stroke patients, most demonstrate the blood stasis syndrome. Platelet is considered to be one of the necessary factors in thrombosis, which closely relates to the TCM syndrome of blood stasis and the occurrence of cardiovascular and cerebrovascular diseases. The clinical and laboratory research on platelet activation and aggregation has been paid more and more attention. Its purpose is to treat and prevent blood stasis syndrome. In this study, the authors analyzed the research on the dysfunctions of platelets in blood stasis syndrome, biological basis of TCM blood stasis syndrome, and the effect of blood-activating stasis-resolving prescriptions on platelets, aiming at providing a reference for exploring the mechanism of platelet intervention in the treatment of TCM blood stasis syndrome and the pathways and targets of Chinese medicine in the prevention and treatment of the syndrome.
Blood Platelets
;
Coronary Disease
;
Humans
;
Medicine, Chinese Traditional
;
Platelet Activation
;
Syndrome
7.Roles of Platelet Toll-like Receptors in Thrombosis.
Acta Academiae Medicinae Sinicae 2020;42(3):388-392
Platelets are non-nuclear blood cells that are widely involved in physiological and pathological processes.Their main role is to participate in hemostasis and thrombosis.Toll-like receptors(TLRs)are innate immune receptors.Platelets express multiple TLRs and can promote thrombosis by recognizing ligand-induced platelet activation and aggregation.This article reviews the relationship between platelets/TLR and thrombosis and the roles of TLRs in the development of thrombotic diseases.
Blood Platelets
;
Hemostasis
;
Humans
;
Platelet Activation
;
Thrombosis
;
Toll-Like Receptors
8.Characterization of the distinct mechanism of agonist-induced canine platelet activation
Preeti K CHAUDHARY ; Soochong KIM
Journal of Veterinary Science 2019;20(1):10-15
Platelet activation has a major role in hemostasis and thrombosis. Various agonists including adenosine diphosphate (ADP) and thrombin interact with G protein-coupled receptors (GPCRs) which transduce signals through various G proteins. Recent studies have elucidated the role of GPCRs and their corresponding G proteins in the regulation of events involved in platelet activation. However, agonist-induced platelet activation in companion animals has not been elucidated. This study was designed to characterize the platelet response to various agonists in dog platelets. We found that 2-methylthio-ADP-induced dog platelet aggregation was blocked in the presence of either P2Y₁ receptor antagonist MRS2179 or P2Y₁₂ receptor antagonist AR-C69931MX, suggesting that co-activation of both the P2Y₁ and P2Y₁₂ receptors is required for ADP-induced platelet aggregation. Thrombin-induced dog platelet aggregation was inhibited in the presence of either AR-C69931MX or the PKC inhibitor GF109203X, suggesting that thrombin requires secreted ADP to induce platelet aggregation in dog platelets. In addition, thrombin-mediated Akt phosphorylation was inhibited in the presence of GF109203X or AR-C69931MX, indicating that thrombin causes Gi stimulation through the P2Y₁₂ receptor by secreted ADP in dog platelets. Unlike human and murine platelets, protease-activated receptor 4 (PAR4)-activating peptide AYPGKF failed to cause dog platelet aggregation. Moreover, PAR1-activating peptide SFLLRN or co-stimulation of SFLLRN and AYPGKF failed to induce dog platelet aggregation. We conclude that ADP induces platelet aggregation through the P2Y₁ and P2Y₁₂ receptors in dogs. Unlike human and murine platelets, selective activation of the PAR4 receptor may be insufficient to cause platelet aggregation in dog platelets.
Adenosine Diphosphate
;
Animals
;
Blood Platelets
;
Dogs
;
GTP-Binding Proteins
;
Hemostasis
;
Humans
;
Pets
;
Phosphorylation
;
Platelet Activation
;
Platelet Aggregation
;
Receptors, Proteinase-Activated
;
Thrombin
;
Thrombosis
9.Platelet activation in inflammatory bowel disease.
Journal of Central South University(Medical Sciences) 2019;44(8):931-934
Platelet lineage suggests that it plays a crucial role in immune responses. In recent years, many studies have found that platelet activation is closely related to the activity of inflammatory bowel disease. Activated platelets can release inflammatory mediators, and express surface molecules that mediate inflammation, interact with leukocytes and vascular endothelial cells. It provides a theoretical basis for antiplatelet drugs to treat the inflammatory bowel disease.
Blood Platelets
;
Endothelial Cells
;
Humans
;
Inflammatory Bowel Diseases
;
Platelet Activation
;
Platelet Aggregation Inhibitors
10.Effect of triptolide in improving platelet activation in patients with ankylosing spondylitis by regulating VEGFA,SDF-1,CXCR4 pathway.
Yan-Yan FANG ; Lei WAN ; Wen-Zhe DONG ; Jian-Ting WEN ; Jian LIU
China Journal of Chinese Materia Medica 2019;44(16):3520-3525
The effect of triptolide( TP) on VEGFA,SDF-1,CXCR4 pathway were investigated in vitro to explore the mechanism in improving platelet activation in patients with ankylosing spondylitis( AS). Peripheral blood mononuclear cells( PBMC) were used for the experiment and divided into 4 groups: normal group( NC),model group( MC),triptolide group( TP),and AMD3100 group. The optimal concentration of TP was measured by the MTT method. The expressions of TNF-α,IL-1β,IL-4,IL-10,VEGFA and VEGFR were detected by ELISA. The expressions of SDF-1,CXCR4 and VEGFA were detected by real-time quantitative PCR( RT-qPCR).The expressions of SDF-1,CXCR4,VEGFA and VEGFR were detected by Western blot. The expression levels of CD62 p,CD40 L and PDGFA were detected by immunofluorescence. MTT results showed that medium-dose TP had the strongest inhibitory effect on cells at24 h. The results of ELISA and PCR showed that TP inhibited mRNA expressions of IL-1β,TNF-α,VEGFA,VEGFR and SDF-1,CXCR4 and VEGFA. The results of Western blot indicated that TP inhibited SDF-1,CXCR4 and VEGFA,VEGFR protein expressions; immunofluorescence results indicate that TP can inhibit the expressions of CD62 p,CD40 L,PDGFA. TP may regulate platelet activation by down-regulating SDF-1,CXCR4,VEGFA and VEGFR mRNA expressions,thereby down-regulating IL-1β and TNF-αexpressions,and up-regulating the expressions of IL-4 and IL-10 cytokines.
Cells, Cultured
;
Chemokine CXCL12
;
metabolism
;
Cytokines
;
metabolism
;
Diterpenes
;
pharmacology
;
Epoxy Compounds
;
pharmacology
;
Heterocyclic Compounds
;
pharmacology
;
Humans
;
Leukocytes, Mononuclear
;
drug effects
;
Phenanthrenes
;
pharmacology
;
Platelet Activation
;
Receptors, CXCR4
;
metabolism
;
Spondylitis, Ankylosing
;
Vascular Endothelial Growth Factor A
;
metabolism

Result Analysis
Print
Save
E-mail