1.Screening of quality markers and activity verification of Glycyrrhizae Radix et Rhizoma based on small molecule compound-protein interaction.
Yu-Jing HUI ; Jin-Gao YU ; Xiu-He FAN ; Zhong-Xing SONG ; Zhi-Shu TANG ; Mei WANG ; Yu-Peng WANG
China Journal of Chinese Materia Medica 2023;48(20):5498-5508
		                        		
		                        			
		                        			In order to solve the problem of weak correlation between quality control components and efficacy of Glycyrrhizae Radix et Rhizoma, this study detected the interaction between small molecular chemical components of Glycyrrhizae Radix et Rhizoma and total proteins of various organs of mice by fluorescence quenching method to screen potential active components. The 27 chemical components in Glycyrrhizae Radix et Rhizoma were detected by HPLC and their deletion rates in 34 batches of Glycyrrhizae Radix et Rhizoma were calculated. Combined with the principle of component effectiveness and measurability, the potential quality markers(Q-markers) of Glycyrrhizae Radix et Rhizoma were screened. RAW264.7 macrophage injury model was induced by microplastics. The cell viability and nitric oxide content were detected by CCK-8 and Griess methods. The levels of inflammatory factors(TNF-α, IL-1β, IL-6, CRP) and oxidative stress markers(SOD, MDA, GSH) were detected by the ELISA method to verify the activity of Q-markers. It was found that the interaction strength between different chemical components and organ proteins in Glycyrrhizae Radix et Rhizoma was different, reflecting different organ selectivity and 18 active components were screened out. Combined with the signal-to-noise ratio of the HPLC chromatographic peaks and between-run stability of the components, seven chemical components such as liquiritin apioside, liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, isoliquiritigenin and ammonium glycyrrhizinate were finally screened as potential Q-markers of Glycyrrhizae Radix et Rhizoma. In vitro experiments showed that Q-markers of Glycyrrhizae Radix et Rhizoma could dose-dependently alleviate RAW264.7 cell damage induced by microplastics, inhibit the secretion of inflammatory factors, and reduce oxidative stress. Under the same total dose, the combination of various chemical components could synergistically enhance anti-inflammatory and antioxidant effects compared with the single use. This study identified Q-markers related to the anti-inflammatory and antioxidant effects of Glycyrrhizae Radix et Rhizoma, which can provide a reference for improving the quality control standards of Glycyrrhizae Radix et Rhizoma.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants/analysis*
		                        			;
		                        		
		                        			Microplastics/analysis*
		                        			;
		                        		
		                        			Plastics/analysis*
		                        			;
		                        		
		                        			Rhizome/chemistry*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/analysis*
		                        			;
		                        		
		                        			Glycyrrhiza/chemistry*
		                        			;
		                        		
		                        			Anti-Inflammatory Agents/analysis*
		                        			
		                        		
		                        	
2.Preface to the special issue: biotechnology of plastic waste degradation and valorization.
Jie ZHOU ; Tianyuan SU ; Min JIANG ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1861-1866
		                        		
		                        			
		                        			Synthetic plastics have been widely used in various fields of the national economy and are the pillar industry. However, irregular production, plastic product use, and plastic waste piling have caused long-term accumulation in the environment, contributing considerably to the global solid waste stream and environmental plastic pollution, which has become a global problem to be solved. Biodegradation has recently emerged as a viable disposal method for a circular plastic economy and has become a thriving research area. In recent years, important breakthroughs have been made in the screening, isolation, and identification of plastic-degrading microorganisms/enzyme resources and their further engineering, which provide new ideas and solutions for treating microplastics in the environment and the closed-loop bio-recycling of waste plastics. On the other hand, the use of microorganisms (pure cultures or consortia) to further transform different plastic degradants into biodegradable plastics and other compounds with high added value is of great significance, promoting the development of a plastic recycling economy and reducing the carbon emission of plastics in their life cycle. We edited a Special Issue on the topic of "Biotechnology of Plastic Waste Degradation and Valorization", focusing on the researches progress in three aspects: Mining microbial and enzyme resources for plastic biodegradation, Design and engineering of plastic depolymerase, and biological high-value transformation of plastic degradants. In total, 16 papers have been collected in this issue including reviews, comments, and research articles, which provide reference and guidance for further development of plastic waste degradation and valorization biotechnology.
		                        		
		                        		
		                        		
		                        			Biodegradable Plastics
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			;
		                        		
		                        			Biotechnology
		                        			
		                        		
		                        	
3.Opportunities, challenges and suggestions for the development of plastic degradation and recycling under the context of circular bioeconomy.
Rui XU ; Fang CHEN ; Chenjun DING
Chinese Journal of Biotechnology 2023;39(5):1867-1882
		                        		
		                        			
		                        			At present, the negative impact caused by white pollution has spread to all aspects of human society economy, ecosystem, and health, which causes severe challenges for developing the circular bioeconomy. As the largest plastic production and consumption country in the world, China has shouldered an important responsibility in plastic pollution control. In this context, this paper analyzed the relevant strategies of plastic degradation and recycling in the United States, Europe, Japan and China, measured the literature and patents in this field, analyzed the status quo of technology from the perspective of research and development trends, major countries, major institutions, and discussed the opportunities and challenges faced by the development of plastic degradation and recycling in China. Finally, we put forward future development suggestions which include the integration of policy system, technology path, industry development and public cognition.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Plastics
		                        			;
		                        		
		                        			Ecosystem
		                        			;
		                        		
		                        			Environmental Pollution
		                        			;
		                        		
		                        			Recycling
		                        			;
		                        		
		                        			Policy
		                        			
		                        		
		                        	
4.Commentary: polymer binding modules accelerate enzymatic degradation of poly(ethylene terephthalate).
Yi LU ; Ruizhi HAN ; Ulrich SCHWANEBERG ; Yu JI
Chinese Journal of Biotechnology 2023;39(5):1883-1888
		                        		
		                        			
		                        			The large scale production and indiscriminate use of plastics led to serious environmental pollution. To reduce the negative effects of plastics waste on the environment, an approach of enzymatic degradation was put forward to catalyze plastics degradation. Protein engineering strategies have been applied to improve the plastics degrading enzyme properties such as activity and thermal stability. In addition, polymer binding modules were found to accelerate the enzymatic degradation of plastics. In this article, we introduced a recent work published in Chem Catalysis, which studied the role of binding modules in enzymatic hydrolysis of poly(ethylene terephthalate) (PET) at high-solids loadings. Graham et al. found that binding modules accelerated PET enzymatic degradation at low PET loading (< 10 wt%) and the enhanced degradation cannot be observed at high PET loading (10 wt%-20 wt%). This work is beneficial for the industrial application of polymer binding modules in plastics degradation.
		                        		
		                        		
		                        		
		                        			Polyethylene Terephthalates/metabolism*
		                        			;
		                        		
		                        			Polymers
		                        			;
		                        		
		                        			Plastics
		                        			;
		                        		
		                        			Ethylenes
		                        			
		                        		
		                        	
5.Advances in methods for detecting plastics biodegradation.
Yuanbo WANG ; Shiyue ZHENG ; Fan WANG ; Junqian PENG ; Jie ZHOU ; Fang WANG ; Min JIANG ; Xiaoqiang CHEN
Chinese Journal of Biotechnology 2023;39(5):1889-1911
		                        		
		                        			
		                        			The pollution caused by improper handling of plastics has become a global challenge. In addition to recycling plastics and using biodegradable plastics, an alternative solution is to seek efficient methods for degrading plastics. Among them, the methods of using biodegradable enzymes or microorganisms to treat plastics have attracted increasing attention because of its advantages of mild conditions and no secondary environmental pollution. Developing highly efficient depolymerizing microorganisms/enzymes is the core for plastics biodegradation. However, the current analysis and detection methods cannot meet the requirements for screening efficient plastics biodegraders. It is thus of great significance to develop rapid and accurate analysis methods for screening biodegraders and evaluating biodegradation efficiency. This review summarizes the recent application of various commonly used analytical techniques in plastics biodegradation, including high performance liquid chromatography, infrared spectroscopy, gel permeation chromatography, and determination of zone of clearance, with fluorescence analysis techniques highlighted. This review may facilitate standardizing the characterization and analysis of plastics biodegradation process and developing more efficient methods for screening plastics biodegraders.
		                        		
		                        		
		                        		
		                        			Biodegradable Plastics/chemistry*
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			
		                        		
		                        	
6.Synthesis, biodegradation and waste disposal of polylactic acid plastics: a review.
Bin XIE ; Rongrong BAI ; Huashan SUN ; Xiaoli ZHOU ; Weiliang DONG ; Jie ZHOU ; Min JIANG
Chinese Journal of Biotechnology 2023;39(5):1912-1929
		                        		
		                        			
		                        			With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ecosystem
		                        			;
		                        		
		                        			Biodegradable Plastics
		                        			;
		                        		
		                        			Polyesters
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			
		                        		
		                        	
7.Advances in biodegradation of polyolefin plastics.
Yingbo YUAN ; Wenkai ZHOU ; Quanfeng LIANG ; Longyang DIAN ; Tianyuan SU ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1930-1948
		                        		
		                        			
		                        			Polyolefin plastics are a group of polymers with C-C backbone that have been widely used in various areas of daily life. Due to their stable chemical properties and poor biodegradability, polyolefin plastic waste continues to accumulate worldwide, causing serious environmental pollution and ecological crises. In recent years, biological degradation of polyolefin plastics has attracted considerable attention. The abundant microbial resources in the nature offer the possibility of biodegradation of polyolefin plastic waste, and microorganisms capable of degrading polyolefin have been reported. This review summarizes the research progress on the biodegradation microbial resources and the biodegradation mechanisms of polyolefin plastics, presents the current challenges in the biodegradation of polyolefin plastics, and provides an outlook on future research directions.
		                        		
		                        		
		                        		
		                        			Plastics/metabolism*
		                        			;
		                        		
		                        			Polymers/metabolism*
		                        			;
		                        		
		                        			Polyenes
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			
		                        		
		                        	
8.Polyethylene biodegradation: current status and perspectives.
Liting ZHANG ; Bo ZHANG ; Weidong XU ; Zhongli CUI ; Hui CAO
Chinese Journal of Biotechnology 2023;39(5):1949-1962
		                        		
		                        			
		                        			Polyethylene (PE) is the most abundantly used synthetic resin and one of the most resistant to degradation, and its massive accumulation in the environment has caused serious pollution. Traditional landfill, composting and incineration technologies can hardly meet the requirements of environmental protection. Biodegradation is an eco-friendly, low-cost and promising method to solve the plastic pollution problem. This review summarizes the chemical structure of PE, the species of PE degrading microorganisms, degrading enzymes and metabolic pathways. Future research is suggested to focus on the screening of high-efficiency PE degrading strains, the construction of synthetic microbial consortia, the screening and modification of degrading enzymes, so as to provide selectable pathways and theoretical references for PE biodegradation research.
		                        		
		                        		
		                        		
		                        			Polyethylene/metabolism*
		                        			;
		                        		
		                        			Bacteria/metabolism*
		                        			;
		                        		
		                        			Plastics/metabolism*
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			;
		                        		
		                        			Microbial Consortia
		                        			
		                        		
		                        	
9.Screening and identification of a polyurethane-degrading bacterium G-11 and its plastic degradation characteristics.
Zhitong JIANG ; Xue CHEN ; Jinhui LEI ; Huizhen XUE ; Bo ZHANG ; Xiaofan XU ; Huijing GENG ; Zhoukun LI ; Xin YAN ; Weiliang DONG ; Hui CAO ; Zhongli CUI
Chinese Journal of Biotechnology 2023;39(5):1963-1975
		                        		
		                        			
		                        			Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.
		                        		
		                        		
		                        		
		                        			Plastics/metabolism*
		                        			;
		                        		
		                        			Polyurethanes/chemistry*
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S
		                        			;
		                        		
		                        			Bacteria/genetics*
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			
		                        		
		                        	
10.Advances in poly(ethylene terephthalate) hydrolases.
Zhiyi ZHAO ; Guoqiang ZHANG ; Kun LIU ; Shengying LI
Chinese Journal of Biotechnology 2023;39(5):1998-2014
		                        		
		                        			
		                        			Plastics have brought invaluable convenience to human life since it was firstly synthesized in the last century. However, the stable polymer structure of plastics led to the continuous accumulation of plastic wastes, which poses serious threats to the ecological environment and human health. Poly(ethylene terephthalate) (PET) is the most widely produced polyester plastics. Recent researches on PET hydrolases have shown great potential of enzymatic degradation and recycling of plastics. Meanwhile, the biodegradation pathway of PET has become a reference model for the biodegradation of other plastics. This review summarizes the sources of PET hydrolases and their degradation capacity, degradation mechanism of PET by the most representative PET hydrolase-IsPETase, and recently reported highly efficient degrading enzymes through enzyme engineering. The advances of PET hydrolases may facilitate the research on the degradation mechanism of PET and further exploration and engineering of efficient PET degradation enzymes.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hydrolases/metabolism*
		                        			;
		                        		
		                        			Polyethylene Terephthalates/metabolism*
		                        			;
		                        		
		                        			Plastics/metabolism*
		                        			;
		                        		
		                        			Ethylenes
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail