1.Epithelial cell adhesion efficacy of a novel peptide identified by panning on a smooth titanium surface.
Hidemichi KIHARA ; David M KIM ; Masazumi NAGAI ; Toshiki NOJIRI ; Shigemi NAGAI ; Chia-Yu CHEN ; Cliff LEE ; Wataru HATAKEYAMA ; Hisatomo KONDO ; John DA SILVA
International Journal of Oral Science 2018;10(3):21-21
Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide (A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide (PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL (stained by Ln5) with pericellular junctions (stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.
Amino Acid Sequence
;
Animals
;
Benzeneacetamides
;
chemical synthesis
;
pharmacology
;
Cattle
;
Cell Adhesion
;
drug effects
;
Cell Movement
;
drug effects
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Dental Implants
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Attachment
;
drug effects
;
Epithelial Cells
;
cytology
;
metabolism
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Piperidones
;
chemical synthesis
;
pharmacology
;
Platelet-Rich Plasma
;
Receptors, Thrombin
;
Surface Properties
;
Titanium
;
chemistry
2.Role of Biology Based on Epigenetics in Multiple Myeloma.
Journal of Experimental Hematology 2016;24(3):939-944
Multiple myeloma (MM) is a malignant tumor, characterized by dysplasia of clonal plasma cells in the bone marrow secreting large amounts of monoclonal immunoglobulin or fragments (M protein), resulting in damage in relevant organs or tissues. The biological complexity of MM is based on disrupted cancer pathways. Except the central role of cytogenetic abnormalities, epigenetic aberrations have also been shown to be involved in the occurrence and development of MM. Epigenetics of MM is mainly concentrated in the ways of DNA methylation, histone modifications and noncoding RNA, which have generated abnormal signaling pathways to regulate cell cycle and apoptosis of MM. In this article, advances of research on epigenetics of development, clinical diagnosis and treatments of MM are reviewed.
Apoptosis
;
Bone Marrow
;
metabolism
;
Cell Cycle
;
Chromosome Aberrations
;
DNA Methylation
;
Epigenesis, Genetic
;
Humans
;
Multiple Myeloma
;
genetics
;
Myeloma Proteins
;
metabolism
;
Plasma Cells
;
cytology
;
Signal Transduction
3.Detection of circulating plasma cells in multiple myeloma with extramedullary plasmacytoma.
Jing WANG ; Shuang GENG ; Yuping ZHONG ; Wenming WANG ; Yuhong PANG ; Jiajia ZHANG ; Yuanyuan LIU ; Yanyi HUANG ; Hongmei JING
Chinese Journal of Hematology 2016;37(4):337-339
Humans
;
Multiple Myeloma
;
blood
;
diagnosis
;
Plasma Cells
;
cytology
;
Plasmacytoma
;
blood
;
diagnosis
4.Cytotoxicity of modified nonequilibrium plasma with chlorhexidine digluconate on primary cultured human gingival fibroblasts.
Hui CHEN ; Qi SHI ; Ying QING ; Yi-chen YAO ; Ying-guang CAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):137-141
The aim of this study was to investigate the cytotoxicity of modified nonequilibrium plasma with chlorhexidine digluconate (CHX) on human gingival fibroblasts (HGFs), and to evaluate the biosecurity of modified nonequilibrium plasma with 2% CHX as a new method of root canal treatment. Tissue samples taken from human gingiva were primarily cultured and passaged. Cells from passages 3-7 were used. HGFs were treated by modified nonequilibrium plasma with 2% CHX for 0 min (control group), 30 s, 1 min, 1.5 min, 3 min, 5 min, and 10 min, respectively, and then they were incubated for 0, 24, and 48 h. After that, cell counting kit-8 (CCK-8) assay was applied to analyze the cytotoxicity of modified nonequilibrium plasma with 2% CHX on HGFs. There was no significant difference between the 0 h group treated with the modified nonequilibrium plasma for 1 min and the control group (P>0.05). However, there were significant differences between all the other treated groups and the control group (P<0.05). When treated for 1.5 min or shorter, the cell viability was obviously increased; while treated for 3 min or longer, it was obviously reduced. Moreover, when successively cultured for 0, 24, and 48 h, cell viability was decreased at first and then increased in the 3-min-treated and 5-min-treated groups. The modified nonequilibrium plasma with 2% CHX was of no influence on cell viability in 1.5 min treatment, and it could be safely used on root canal treatment.
Adolescent
;
Adult
;
Anti-Infective Agents, Local
;
adverse effects
;
toxicity
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Chlorhexidine
;
adverse effects
;
analogs & derivatives
;
toxicity
;
Fibroblasts
;
drug effects
;
Gingiva
;
cytology
;
Humans
;
Plasma
;
chemistry
;
Root Canal Therapy
;
instrumentation
;
methods
5.Plasma from patients with systemic lupus erythematosus inhibits suppressive activity of mesenchymal stem cells against lupus B lymphocytes.
Ying-Jie NIE ; Li-Mei LUO ; Yan ZHA ; Li SUN ; Ji LUO ; Run-Sang PAN ; Xiao-Bin TIAN
Journal of Southern Medical University 2016;36(8):1090-1093
OBJECTIVETo investigate whether plasma from patients with systemic lupus erythematosus (SLE) inhibits the suppressive effects of mesenchymal stem cells (MSCs) on lupus B lymphocytes.
METHODSMSCs isolated and expanded from the bone marrow of healthy donors were co-cultured with B cells purified from the peripheral blood of SLE patients in the presence of fetal bovine serum or pooled plasma from SLE patients, and the proliferation and maturation of the B lymphocytes were analyzed.
RESULTSs Co-culture with normal MSCs obviously inhibited the proliferation of lupus B cells and suppressed the maturation of B lymphocytes, which showed lowered expressions of CD27 and CD38. The pooled plasma from SLE patients significantly inhibited the suppressive effects of normal MSCs on B cell proliferation and maturation.
CONCLUSIONPlasma from SLE patients negatively modulates the effects of normal MSCs in suppressing lupus B cell proliferation and maturation to affect the therapeutic effect of MSC transplantation for treatment of SLE. Double filtration plasmapheresis may therefore prove beneficial to enhance the therapeutic effects of MSC transplantation for SLE.
B-Lymphocytes ; pathology ; Cell Proliferation ; Coculture Techniques ; Humans ; Lupus Erythematosus, Systemic ; blood ; Lymphocyte Activation ; Mesenchymal Stromal Cells ; cytology ; Plasma
6.The expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects in rabbits with bone marrow stem cells compounded with platelet-rich fibrin.
Chunmei ZHOU ; Shuhui LI ; Naikuli WENQIGULI ; Li YU ; Lu ZHAO ; Peiling WU ; Tuerxun NIJIATI
West China Journal of Stomatology 2016;34(2):130-135
OBJECTIVEWe explored the expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects by establishing animal models with a composite of autologous bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) to repair bone defects in the extraction sockets of rabbits.
METHODSA total of 36 two-month-old male New Zealand white rabbits were randomly divided into four groups, and the left mandibular incisors of all the rabbits were subjected to minimally invasive removalunder general anesthesia. BMSC-PRF compounds, single PRF, and single BMSC were implanted in Groups A, B, and C. No material was implanted in Group D (blank control). The animals were sacrificed at 4, 8 and 12 weeks after surgery, the bone defect was immediately drawn, and the bone specimens underwent surgery after four, eight, and twelve weeks, with three rabbits per time point. The expressions of Notch1 and Wnt3a in the repair process of the bone defect were measured via immunohistochemical and immunofluorescence detection.
RESULTSImmunohistochemistry showed that the expressions of Notch1 and Wnt3a in Groups A, B, and C were higher than that in Group D at the fourth and eighth week after operation (P<0.05). By contrast, the expressions of Notch1 and Wnt3a in Group D were higher than those in Groups A, B, and C at the twelfth week (P<0.05). Immunofluorescence showed that the expressions of both Notch1 and Wnt3a reached their peaks in the new bone cells of the bone defect after four weeks following surgery and gradually disappeared when the bone was repaired completely.
CONCLUSIONNotch1 and Wnt3a signaling molecules are expressed in the process of repairing bone defects using BMSC-PRF composites and can accelerate the healing by regulating the proliferation and differentiation of BMSCs. Moreover, the expressions of Notch and Wnt are similar, and a crosstalk between them may exist it.
Alveolar Bone Grafting ; methods ; Animals ; Blood Platelets ; Bone Marrow Cells ; cytology ; Bone Transplantation ; methods ; Bone and Bones ; abnormalities ; Cell Differentiation ; Fibrin ; administration & dosage ; Male ; Mesenchymal Stem Cell Transplantation ; methods ; Mesenchymal Stromal Cells ; Platelet-Rich Plasma ; Rabbits ; Random Allocation ; Receptor, Notch1 ; metabolism ; Tissue Engineering ; Wnt Signaling Pathway ; Wnt3A Protein ; metabolism ; Wound Healing
7.Adverse Prognostic Impact of Bone Marrow Microvessel Density in Multiple Myeloma.
Nuri LEE ; Hyewon LEE ; Soo Young MOON ; Ji Yeon SOHN ; Sang Mee HWANG ; Ok Jin YOON ; Hye Sun YOUN ; Hyeon Seok EOM ; Sun Young KONG
Annals of Laboratory Medicine 2015;35(6):563-569
BACKGROUND: Angiogenesis is important for the proliferation and survival of multiple myeloma (MM) cells. Bone marrow (BM) microvessel density (MVD) is a useful marker of angiogenesis and is determined by immunohistochemical staining with anti-CD34 antibody. This study investigated the prognostic impact of MVD and demonstrated the relationship between MVD and previously mentioned prognostic factors in patients with MM. METHODS: The study included 107 patients with MM. MVD was assessed at initial diagnosis in a blinded manner by two hematopathologists who examined three CD34-positive hot spots per patient and counted the number of vessels in BM samples. Patients were divided into three groups according to MVD tertiles. Cumulative progression-free survival (PFS) and overall survival (OS) curves, calculated by using Kaplan-Meier method, were compared among the three groups. Prognostic impact of MVD was assessed by calculating Cox proportional hazard ratio (HR). RESULTS: Median MVDs in the three groups were 16.8, 33.9, and 54.7. MVDs were correlated with other prognostic factors, including beta2-microglobulin concentration, plasma cell percentage in the BM, and cancer stage according to the International Staging System. Multivariate Cox regression analysis showed that high MVD was an independent predictor of PFS (HR=2.57; 95% confidence interval, 1.22-5.42; P=0.013). PFS was significantly lower in the high MVD group than in the low MVD group (P=0.025). However, no difference was observed in the OS (P=0.428). CONCLUSIONS: Increased BM MVD is a marker of poor prognosis in patients newly diagnosed with MM. BM MVD should be assessed at the initial diagnosis of MM.
Aged
;
Antigens, CD34/metabolism
;
Bone Marrow/metabolism/*pathology
;
Disease-Free Survival
;
Female
;
Humans
;
Immunohistochemistry
;
Kaplan-Meier Estimate
;
Male
;
Microvessels/*physiopathology
;
Middle Aged
;
Multiple Myeloma/*diagnosis/mortality
;
Neoplasm Staging
;
Neovascularization, Pathologic
;
Plasma Cells/cytology
;
Prognosis
;
Proportional Hazards Models
;
Regression Analysis
;
Risk Factors
8.Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue.
Deok Yeol KIM ; Yi Hwa JI ; Deok Woo KIM ; Eun Sang DHONG ; Eul Sik YOON
Journal of Korean Medical Science 2014;29(Suppl 3):S193-S200
Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.
Adipocytes/*transplantation
;
Adipose Tissue/cytology/*transplantation
;
Adult
;
Animals
;
Female
;
*Graft Survival
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
*Platelet-Rich Plasma
;
Stem Cells
;
Stromal Cells/*transplantation
;
Transplantation, Heterologous
9.Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum.
Yan DING ; Zhiyong LU ; Yahong YUAN ; Xiaoli WANG ; Dongsheng LI ; Yi ZENG
Journal of Biomedical Engineering 2013;30(6):1279-1282
To investigate whether human umbilical cord plasma (HUP) can be used to culture human cord blood mesenchymal stem cells (HUCMSCs), we collected 20 surplus HUP. After being treated with salting out and diasysis, the HUP were used to culture HUCMSCs as 10% volume, and compared with fetal bovine serum (FBS). Morphological characteristics, growth curve and reproductive activity of HUCMSCs cells were observed. The concentration of bFGF and noggin secreted by HUCMSCs cultured with HUP and FBS medium were detected by ELISA. It was found that compared to FBS, the morphology, reproductive activity and characteristic of HUCMSCs cell cultured with HUP were not distinctively different from FBS. The concentration of bFGF in HUP group was significantly higher than that of FBS group, and the concentration of noggin was also different in the two groups. So we concluded that HUP could be used to culture HUCMSCs for a long-time, and the HUP mediumcoild could be more suitable for the culture of human embryonic stem cell (hESC).
Animals
;
Cattle
;
Cell Culture Techniques
;
Cells, Cultured
;
Culture Media
;
chemistry
;
Fetal Blood
;
chemistry
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
Plasma
;
chemistry
;
Serum
;
chemistry
10.Effect of PRP on the proliferation of dermal papilla cells and hair follicle regeneration in mice.
Yong MIAO ; Chuan-Bo FENG ; Zhi-Dan ZHANG ; Ze-Hua LI ; Shun-E XIAO ; Jin-Dou JIANG ; Zhi-Qi HU
Chinese Journal of Plastic Surgery 2013;29(2):131-135
OBJECTIVETo investigate the effects of platelet-rich plasma (PRP) on the proliferation of dermal papilla cells (DPCs) and hair follicle regeneration.
METHODSPRP was prepared using the double-spin method and applied to DPCs. The proliferative effect of activated PRP on DPCs was measured using MTT assay. To understand the influence of activated PRP on the hair-inductive capacity of DPCs, freshly isolated epidermal cells and DPCs of passage 4 were resuspended, mixed with various concentrations of a PRP (0%, 5% or 10%) and were then transferred to a grafting chamber, which was implanted onto the dorsal skin of nude mice. The chambers were removed 1 week after grafting and HF formation was monitored for 4 weeks; the graft site was harvested and processed for histological examination.
RESULTSActivated PRP increased the proliferation benefited the aggregative growth of DPCs. There are significant difference in the yield of hair follicles compared with 10% PRP (344 +/- 27) with 0% PRP (288 +/- 35) in the area of reconstituted skin (P < 0.05). The areas treated with PRP demonstrated an increase in hair follicles density of 19.4%. Ten percent PRP (18 +/- 1) d also can significantly shorten the time of hair formation, compared with 0% PRP (20 +/- 1) d (P < 0.05).
CONCLUSIONSThere is a considerable effect of PRP on the time of hair formation and the yield of hair follicles reconstitution.
Animals ; Cell Proliferation ; Cells, Cultured ; Female ; Hair Follicle ; cytology ; growth & development ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Platelet-Rich Plasma ; Regeneration ; Skin ; cytology ; Skin, Artificial

Result Analysis
Print
Save
E-mail