1.Quality of moxa with different leaf-to-moxa ratios based on correlation analysis of thermogravimetric properties, cellulose content, and microscopic characteristics of non-secretory trichomes.
Bing YI ; Li-Ping KANG ; Xin-Yu ZHAO ; Chi ZHANG ; Xin ZOU ; Liu-Jia CHAN ; Hong-Mei LI ; Xian-Zhang HUANG ; Li-Chun ZHAO ; Yuan ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4950-4958
The quality of moxa is a key factor affecting the efficacy of moxibustion. Traditional moxa grades are evaluated by the leaf-to-moxa ratio, but there is a lack of support from scientific data. Scanning electron microscopy(SEM), Image Pro Plus, Van Soest method, and stimultaneous thermal analysis(TGA/DSC) were used to characterize the scientific implication of the combustion differences between moxa with different leaf-to-moxa ratios(processed by crusher). The results showed that the median lengths from non-secretory trichomes(NSTs) of natural NSTs and moxa with leaf-to-moxa ratios of 3∶1, 5∶1, 10∶1, and 15∶1 were 542.46, 303.24, 291.18, 220.69, and 170.61 μm, respectively. The cellulose content of moxa increased significantly(P<0.05) with the increase in leaf-to-moxa ratio and the combustion parameters(T_i, t_i, D_i, C,-R_p,-R_v, S, D_b, and J_(total)) all showed an increasing trend. The correlation results showed that the burning properties of moxa(T_i,-R_v, t_i, and J_2) were significantly and positively correlated with cellulose content. NSTs with a length of 1-200 μm were significantly and positively correlated with J_2. NSTs with a length of 200-600 μm were significantly and positively correlated with J_1, T_(peak2), T_(peak1), and-R_v, and negatively correlated with J_(total), T_b, and t_b. As the leaf-to-moxa ratio increases, the NSTs in the moxa become shorter and the cellulose content increases, which is more conducive to ignition performance, heat release, and a milder, longer-lasting burn. The "NSTs-cellulose-TGA/DSC" quantitative evaluation method scientifically reveals the scientific connotation of the combustion of moxa with different leaf-to-moxa ratios and provides a scientific basis for the establishment of quality evaluation methods for moxa with different leaf-to-moxa ratios.
Trichomes
;
Moxibustion
;
Hot Temperature
;
Plant Leaves
2.Effect of sowing dates on physiological characteristics, yield, and quality of Carthamus tinctorius.
Bin MA ; Ming LI ; Yang-Mei BAO ; Hua LIU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2023;48(18):4967-4973
A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.
Carthamus tinctorius
;
Seeds
;
Peroxidase/metabolism*
;
Plant Leaves/metabolism*
;
Antioxidants
3.Chemical constituents from stems and leaves of Cratoxylum cochinchinense and their inhibitory effects on proliferation of synoviocytes in vitro.
Yong ZHANG ; Ni-Fei SHI ; Zhen XIE ; Yi-Meng ZHAO ; Cai-Huan LIANG ; Ya-Yuan DENG ; Ran WANG ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2023;48(18):5014-5023
The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3β-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) μmol·L~(-1).
Synoviocytes
;
Clusiaceae/chemistry*
;
Xanthones/analysis*
;
Plant Leaves/chemistry*
;
Cell Proliferation
;
Arthritis
4.A new norsesquiterpenoid from Arctium lappa leaves.
Jiang-Nan LYU ; Ling-Xia ZHANG ; Qing-Yu YANG ; Na HUANG ; Zhi-Min WANG ; Li-Ping DAI
China Journal of Chinese Materia Medica 2023;48(18):5024-5031
Chemical constituents were isolated and purified from ethyl acetate fraction of Arctium lappa leaves by silica gel, ODS, MCI, and Sephadex LH-20 column chromatography. Their structures were identified with multiple spectroscopical methods including NMR, MS, IR, UV, and X-ray diffraction combined with literature data. Twenty compounds(1-20) were identified and their structures were determined as arctanol(1), citroside A(2), melitensin 15-O-β-D-glucoside(3), 11β,13-dihydroonopordopicrin(4), 11β,13-dihydrosalonitenolide(5), 8α-hydroxy-β-eudesmol(6), syringin(7), dihydrosyringin(8), 3,4,3',4'-tetrahydroxy-δ-truxinate(9),(+)-pinoresinol(10), phillygenin(11), syringaresinol(12), kaeperferol(13), quercetin(14), luteolin(15), hyperin(16), 4,5-O-dicaffeoylquinic acid(17), 1H-indole-3-carboxaldehyde(18), benzyl-β-D-glucopyranoside(19), and N-(2'-phenylethyl) isobutyramide(20). Among them, compound 1 is a new norsesquiterpenoid, and compounds 2-5, 7-8, and 18-20 are isolated from this plant for the first time.
Arctium/chemistry*
;
Magnetic Resonance Spectroscopy
;
Luteolin/analysis*
;
Plant Leaves/chemistry*
5.Corythucha marmorata affects growth and quality of Artemisia argyi.
Zi-Xin WANG ; Hui-Ying WANG ; Chang-Jie CHEN ; Wei-Lin CHEN ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(19):5162-5171
This study aims to investigate the impact of the invasive pest Corythucha marmorata on the growth and quality of Artemi-sia argyi. The signs of insect damage at the cultivation base of A. argyi in Huanggang, Hubei were observed. The pests were identified based on morphological and molecular evidence. The pest occurrence pattern and damage mechanism were investigated. Electron microscopy, gas chromatography-mass spectrometry(GC-MS), and high performance liquid chromatography(HPLC) were employed to analyze the microstructure, volatile oils, and flavonoid content of the pest-infested leaves. C. marmorata can cause destructive damage to A. argyi. Small decoloring spots appeared on the leaf surface at the initial stage of infestation. As the damage progressed, the spots spread along the leaf veins and aggregated into patches, causing yellowish leaves and even brownish yellow in the severely affected areas. The insect frequently appeared in summer because it thrives in hot dry conditions. After occurrence on the leaves, microscopic examination revealed that the front of the leaves gradually developed decoloring spots, with black oily stains formed by the black excrement attaching to the glandular hairs. The leaf flesh was also severely damaged, and the non-glandular hairs were broken, disor-ganized, and sticky. The content of neochlorogenic acid, cryptochlorogenic acid, isochlorogenic acids A and B, hispidulin, jaceosidin, and eupatilin at the early stage of infestation was significantly higher than that at the middle stage, and the content decreased at the last stage of infestation. The content of eucalyptol, borneol, terpinyl, and caryophyllin decreased in the moderately damaged leaves and increased in the severely damaged leaves. C. marmorata was discovered for the first time on A. argyi leaves in this study, and its prevention and control deserves special attention. The germplasm materials resistant to this pest can be used to breed C. marmorata-resis-tant A. argyi varieties.
Artemisia/chemistry*
;
Plant Breeding
;
Gas Chromatography-Mass Spectrometry
;
Oils, Volatile/analysis*
;
Chromatography, High Pressure Liquid
;
Plant Leaves/chemistry*
6.Comparison of chemical constituents in Artemisiae Argyi Folium from different Dao-di producing areas based on UPLC and HS-GC-MS.
Qian-Qian WANG ; Rui GUO ; Dan ZHANG ; Yu-Guang ZHENG ; Qian ZHENG ; Long GUO
China Journal of Chinese Materia Medica 2023;48(20):5509-5518
This study aims to compare the chemical constituents in 24 batches of Artemisiae Argyi Folium samples collected from three different Dao-di producing areas(Anguo in Hebei, Nanyang in Henan, and Qichun in Hubei). An ultra-performance liquid chromatography(UPLC) method was established to determine the content of 13 nonvolatile components, and headspace-gas chromatography-mass spectrometry(HS-GC-MS) was employed for qualitative analysis and comparison of the volatile components. The content of phenolic acids in Artemisiae Argyi Folium was higher than that of flavonoids, and the content of nonvolatile components showed no significant differences among the samples from the three Dao-di producing areas. A total of 40 volatile components were identified, and the relative content of volatile components in Artemisiae Argyi Folium was significantly different among the samples from different Dao-di producing areas. The principal component analysis and partial least squares discriminant analysis identified 8 volatile components as the potential markers for discrimination of Artemisiae Argyi Folium samples from different Dao-di producing areas. This study revealed the differences in the chemical composition of Artemisiae Argyi Folium samples from three different Dao-di producing areas, providing analytical methods and a scientific basis for the discrimination and quality evaluation of Artemisia Argyi Folium in different Dao-di producing areas.
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Flavonoids/analysis*
;
Plant Leaves/chemistry*
;
Artemisia/chemistry*
7.Comparison on volatile components between Artemisiae Verlotori Folium and Artemisiae Argyi Folium based on GC-MS and chemometrics.
Jing DENG ; Ting-Fen WU ; Chu-Chu ZHONG ; Zhi-Guo MA ; Hui CAO ; Ze-Bin LIN ; Ying ZHANG ; Meng-Hua WU
China Journal of Chinese Materia Medica 2023;48(23):6334-6346
Artemisiae Argyi Folium is commonly used in clinical practice. Artemisiae Verlotori Folium, the dried leaves of Artemisia verlotorum, is often used as a folk substitute for Artemisiae Argyi Folium in Lingnan area. In this study, gas chromatography-triple quadrupole mass spectrometry(GC-MS) was used to detect the volatile oil components of 27 samples of Artemisiae Verlotori Folium and 13 samples of Artemisiae Argyi Folium, and the volatile components were compared between the two species. The internal standard method was combined with multi-reaction monitoring mode(MRM) to determine the content of six major volatile components. Hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were carried out for the content data. The results showed that the Artemisiae Argyi Folium samples had higher content and more abundant volatile oils than the Artemisiae Verlotori Folium samples. Artemisiae Argyi Folium mainly had the components with lower boiling points, while Artemisiae Verlotori Folium mainly had the components with higher boiling points. Terpenoids were the main volatile components in Artemisiae Verlotori Folium(mainly sesquiterpenoids) and Artemisiae Argyi Folium(monoterpenoids). In addition, Artemisiae Argyi Folium had higher content of oxygen-containing derivatives than Artemisiae Verlotori Folium. Furthermore, the stoichiometric analysis showed that the two species could be distinguished by both HCA and OPLS-DA, indicating that the volatile components of the two were significantly different. This study can provide a scientific basis for the quality evaluation and data support for the local rational application of Artemisiae Verlotori Folium in Lingnan.
Gas Chromatography-Mass Spectrometry
;
Chemometrics
;
Oils, Volatile
;
Drugs, Chinese Herbal
;
Plant Leaves
;
Artemisia
8.Comparison of active components in different parts of Perilla frutescens and its pharmacological effects.
Liang-Qi ZHANG ; Wen-Jiao LI ; Mei-Feng XIAO
China Journal of Chinese Materia Medica 2023;48(24):6551-6571
Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.
Perilla frutescens/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Fruit/chemistry*
;
Oils, Volatile/analysis*
;
Plant Leaves/chemistry*
9.Chemical composition analysis and value evaluation of stems and leaves of Astragalus membranaceus var. mongholicus.
Qiang-Xiong WANG ; Sheng GUO ; Ke-Xin SHEN ; Hui-Wei LI ; Hao-Kuan ZHANG ; Yi-Jun XIE ; Er-Xin SHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(24):6600-6612
This study aimed to provide data support for resource utilization of the stems and leaves of Astragalus membranaceus var. mongholicus(SLAM) by analyzing and evaluating the chemical constituents. The crude protein, crude fiber, and soluble saccharide of SLAM were analyzed by Kjeldahl method, filtration method, and UV-Vis spectrophotometry, respectively. The nucleosides, amino acids, flavonoids, and saponins of SLAM were analyzed by ultraperformance liquid chromatography-triple quadrupole mass spectrometry(UPLC-TQ-MS). Combined with principal component analysis(PCA), the quality difference of resource components of SLAM was comprehensively evaluated. The results showed that the average content of crude protein, crude fiber, total polysaccharide, and redu-cing sugar in SLAM was 5.11%, 30.33%, 11.03 mg·g~(-1), and 31.90 mg·g~(-1), respectively. Six nucleosides, 15 amino acids, 22 flavonoids, and one saponin were detected, with an average content of 1.49 mg·g~(-1), 6.00 mg·g~(-1), 1.86 mg·g~(-1), and 35.67 μg·g~(-1), respectively. The content of various types of chemical components in SLAM differed greatly in different harvesting periods and growing years. The results of PCA showed that the quality of SLAM produced in Ningxia was superior. The results can provide references for the utilization of SLAM.
Astragalus propinquus/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Flavonoids/analysis*
;
Plant Leaves/chemistry*
;
Amino Acids
;
Saponins/analysis*
10.Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway.
Long CHENG ; Lu SHI ; Changhao HE ; Chen WANG ; Yinglan LV ; Huimin LI ; Yongcheng AN ; Yuhui DUAN ; Hongyu DAI ; Huilin ZHANG ; Yan HUANG ; Wanxin FU ; Weiguang SUN ; Baosheng ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):812-829
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Sirtuin 1/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Morus/metabolism*
;
Flavonoids/metabolism*
;
Prospective Studies
;
Signal Transduction
;
Adipose Tissue, White
;
Plant Leaves
;
Uncoupling Protein 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*

Result Analysis
Print
Save
E-mail