1.Gene cloning, induction, and prokaryotic expression of a Sm14-3-3 protein from Salvia miltiorrhiza.
Chen-Jing SHI ; Shi-Wei WANG ; Jia-Ming PENG ; Hai-Yu XU
China Journal of Chinese Materia Medica 2022;47(18):4886-4894
		                        		
		                        			
		                        			14-3-3 proteins are important proteins in plants, as they regulate plant growth and development and the response to biotic or abiotic stresses. In this study, a 14-3-3 gene(GenBank accession: OM683281) was screened from the cDNA library of the medicinal species Salvia miltiorrhiza by yeast two-hybrid and cloned. The open reading frame(ORF) was 780 bp, encoding 259 amino a cids. Bioinformatics analysis predicted that the protein was a non-transmembrane protein with the molecular formula of C_(1287)H_(2046)N_(346)O_(422)S_9, relative molecular weight of 29.4 kDa, and no signal peptide. Homologous sequence alignment and phylogenetic tree analysis proved that the protein belonged to 14-3-3 family and had close genetic relationship with the 14-3-3 proteins from Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. The 14-3-3 gene was ligated to the prokaryotic expression vector pGEX-4 T-1 and then transformed into Escherichia coli BL21 for the expression of recombinant protein. Real-time fluorescent quantitative PCR showed that the expression of this gene was different among roots, stems, leaves, and flowers of S. miltiorrhiza. To be specific, the highest expression was found in leaves, followed by stems, and the lowest expression was detected in flowers. S. miltiorrhiza plants were treated with 15% PEG(simulation of drought), and hormones salicylic acid, methyl jasmonate, and ethephon, respectively, and the expression of 14-3-3 gene peaked at the early stage of induction. Therefore, the gene can quickly respond to abiotic stresses such as drought and plant hormone treatments such as salicylic acid, jasmonic acid, and ethylene. This study lays the foundation for revealing the molecular mechanism of 14-3-3 protein regulating tanshinone biosynthesis and responding to biotic and abiotic stresses.
		                        		
		                        		
		                        		
		                        			14-3-3 Proteins/metabolism*
		                        			;
		                        		
		                        			Amino Acid Sequence
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			;
		                        		
		                        			Ethylenes/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Plant
		                        			;
		                        		
		                        			Hormones/metabolism*
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Plant Growth Regulators/pharmacology*
		                        			;
		                        		
		                        			Plant Proteins/metabolism*
		                        			;
		                        		
		                        			Recombinant Proteins/genetics*
		                        			;
		                        		
		                        			Salicylic Acid/metabolism*
		                        			;
		                        		
		                        			Salvia miltiorrhiza/metabolism*
		                        			
		                        		
		                        	
2.Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones.
Guo-Yan MO ; Fang HUANG ; Yin FANG ; Lin-Tao HAN ; Kayla K PENNERMAN ; Li-Jing BU ; Xiao-Wei DU ; Joan W BENNETT ; Guo-Hua YIN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):131-144
		                        		
		                        			
		                        			Anemone flaccida Fr. Schmidt is a perennial medicinal herb that contains pentacyclic triterpenoid saponins as the major bioactive constituents. In China, the rhizomes are used as treatments for a variety of ailments including arthritis. However, yields of the saponins are low, and little is known about the plant's genetic background or phytohormonal responsiveness. Using one-quarter of the 454 pyrosequencing information from the Roche GS FLX Titanium platform, we performed a transcriptomic analysis to identify 157 genes putatively encoding 26 enzymes involved in the synthesis of the bioactive compounds. It was revealed that there are two biosynthetic pathways of triterpene saponins in A. flaccida. One pathway depends on β-amyrin synthase and is similar to that found in other plants. The second, subsidiary ("backburner") pathway is catalyzed by camelliol C synthase and yields β-amyrin as minor byproduct. Both pathways used cytochrome P450-dependent monooxygenases (CYPs) and family 1 uridine diphosphate glycosyltransferases (UGTs) to modify the triterpenoid backbone. The expression of CYPs and UGTs were quite different in roots treated with the phytohormones methyl jasmonate, salicylic acid and indole-3-acetic acid. This study provides the first large-scale transcriptional dataset for the biosynthetic pathways of triterpene saponins and their phytohormonal responsiveness in the genus Anemone.
		                        		
		                        		
		                        		
		                        			Anemone
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Biosynthetic Pathways
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cytochrome P-450 Enzyme System
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation, Plant
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Glycosyltransferases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oleanolic Acid
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Rhizome
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Saponins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Triterpenes
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Detection of agent "zhuanggenling" and investigation of utilization of plant growth retardants in traditional Chinese medicine cultivation.
Yu-yao ZHAI ; Bao-lin GUO ; Wen-hua HUANG
China Journal of Chinese Materia Medica 2015;40(3):414-420
		                        		
		                        			
		                        			Plant growth retardant as one of plant growth regulator can inhibit the cell division, elongation and growth rate in shoot apical meristem (SAM), which can be reversed by gibberellin regulate the product of photosynthesis transfer to the root and rhizome part. As commonly used plant growth retardant, paclobutrazol, uniconazole, chlorocholine chloride, mepiquat chloride, choline chloride and daminozide are used to promote the growth of root and rhizome, call as "zhuanggenling", "pengdasu", "pengdaji" etc. Single or recombination of plant growth regulator is registered as pesticide, and called as pesticide "zhuanggenling" in this paper. Growth regulator which registered as a foliar fertilizer or fertilization was called agricultural fertilizer "zhuanggenling" in this paper. The author investigate the usage of "zhuanggenling" in the root and rhizome of medicinal plants cultivation from 2012 to 2014 in Sichuan province, Huangyuan town, Mianyang (Ophiopogonis Radix); Pengzhou Aoping town (Chuanxiong Rhizoma); Pengshan Xiejia town (Alismatis Rhizoma); Jiangyou Taiping town and Zhangming town (Aconiti Lateralis Radix Praeparata); Yunnan Wenshan (Notoginseng Radix et Rhizoma); Henan province, Wuzhidafeng Town (Rehmanniae Radix, Achyranthis Bidentatae Radix, Dioscoreae Rhizoma); Gansu Min county (Codonopsis Radix, Angelicae Sinensis Radix); Gansu Li county (Rhei Radix et Rhizoma). The result showed that "zhuanggenling" were applied in the most medicinal plant cultivation except Rhei Radix et Rhizoma. It has been applied widespreadly in Ophiopogonis Radix, Alismatis Rhizoma, Achyranthis Bidentatae Radix, Codonopsis Radix; Rehmanniae Radix, commonly in Angelicae Sinensis Radix application, and occasionally in Chuanxiong Rhizoma, Aconiti Lateralis Radix Praeparata, Notoginseng Radix et Rhizoma and Dioscoreae Rhizoma. In 53 collected sample from plantation areas, fifteen (28%) were pesticide "zhuanggenling", thirty-eight (72%) were pesticide "zhuanggenling". UPLC analysis results showed that 38 farmers fertilizer "zhuanggenling" content of 6 kinds of plant growth retardant. It is regarded that fertilizer "zhuanggenling" was dominant in medicinal plant cultivation, and that the plant growth retardant is added widespreadly in farm fertilizer "zhuanggenling". All evidence proves conclusively that "zhuanggenling" have been used in the proper way, whereas some others have been misused or even abused in the use regarding to type, number, use frequency. The root or rhizoma are increased to 20%-200%. But there is lack of evaluation to appraise the quality of medicinal materials from the aspects of research or industry. "zhuanggenling" has become a important Chemical control material besides fertilizer, insecticidal sterilization of pesticide
		                        		
		                        		
		                        		
		                        			China
		                        			;
		                        		
		                        			Fertilizers
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			growth & development
		                        			
		                        		
		                        	
4.Study on exogenous hormones inducing parthenocarpy fruit growth and development and quality of Siraitia grosvenorii.
Jie HUANG ; Dong-ping TU ; Xiao-jun MA ; Chang-ming MO ; Li-mei PAN ; Long-hua BAI ; Shi-xin FENG
China Journal of Chinese Materia Medica 2015;40(18):3567-3572
		                        		
		                        			
		                        			To explore the growth and development and analyze the quality of the parthenocarpy fruit induced by exogenous hormones of Siraitia grosvenorii. the horizontal and vertical diameter, volume of the fruit were respectively measured by morphological and the content of endogenous hormones were determined by ELISA. The size and seed and content of mogrosides of mature fruit were determined. The results showed that the fruit of parthenocarpy was seedless and its growth and development is similar to the diploid fruit by hand pollination and triploid fruit by hand pollination or hormones. But the absolute value of horizontal and vertical diameter, volume of parthenocarpy fruit was less than those of fruit by hand pollination, while triploid was opposite. The content of IAA, ABA and ratio of ABA/GA was obviously wavy. At 0-30 d the content of IAA and ABA of parthenocarpy fruit first reduced then increased, content of IAA and GA parthenocarpy fruit was higher than that of fruit by hand pollination. Mogrosides of parthenocarpy fruit was close to pollination fruit. Hormones can induce S. grosvenorii parthenocarpy to get seedless fruit and the fruit shape and size and quality is close to normal diploid fruit by hand pollination and better than triploid fruit by hormone or hand pollination.
		                        		
		                        		
		                        		
		                        			Cucurbitaceae
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Diploidy
		                        			;
		                        		
		                        			Fruit
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
5.Effects of plant growth regulator uniconazole on plant morphology and biomass allocation of Salvia miltiorrhiza.
Shu-rui GAO ; Zhi-gang ZHAO ; Jun-ling HOU ; Wen-quan WANG ; Yan SONG ; Bin-bin YAN ; Yan-qing JIN
China Journal of Chinese Materia Medica 2015;40(10):1925-1929
		                        		
		                        			
		                        			In this study, we use pot experiment to evaluate the effect of plant growth regulator on plant morphology and biomass allocation of Salvia miltiorrhiza. Different concentrations of uniconazole were supplied to S. miltioohiza by means of foliar spray. Height, breadth and stem diameter were measured dynamically, the biomass of leaf, stem, flower and fruit, root biomass and biomass ratio were also examined at the harvest time. Owing to the treatment, plant morphology showed significant changes, the height had been greatly reduced and the breadth decreased largely. Meanwhile, the biomass allocation changed too. The biomass ratio of leaf and stem had been notably reduced while the biomass ratio of root had been increased remarkably. It appears that foliar application of uniconazole during vigorous growth period in S. miltioohiza has dramatic effect on dwarfing plant and improving resistant to lodging. This measure could also be applied to condensed cultivation of S. miltioohiza to increase production.
		                        		
		                        		
		                        		
		                        			Biomass
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Leaves
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Plant Stems
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Salvia miltiorrhiza
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Triazoles
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
6.Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis.
Yu XIANG ; Chun-sheng LIU ; Yong LIU ; Xiao-na SONG ; Xuan GU
China Journal of Chinese Materia Medica 2015;40(9):1688-1692
		                        		
		                        			
		                        			An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin.
		                        		
		                        		
		                        		
		                        			Abscisic Acid
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Color
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Flavanones
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Glucosides
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Glycyrrhiza uralensis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Glycyrrhizic Acid
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
7.Influence of plant growth regulater on yield and quality of Salvia miltiorrhiza.
China Journal of Chinese Materia Medica 2014;39(11):1992-1994
		                        		
		                        			
		                        			The study is aimed to investigate the effect of plant growth regulators on yield and quality of the Salvia miltiorrhiza. The plant growth regulators was spraying on Salvia plants in July or August in field experiment, then the yield, ingredient content and the antioxidant activity were determined. The results showed that plant growth regulator 'Zhuanggenling' could increase the yield of Salvia with root-planting by 38.45%. Plant growth regulator 'Duoxiaozuo' could increase the yield of Salvia with seedling planting by 14.19%. Both plant growth regulator significantly reduced the antioxidant activity of Salvia in vitro, but they had no significant effect on active ingredient contents.
		                        		
		                        		
		                        		
		                        			Diterpenes, Abietane
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Salvia miltiorrhiza
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			
		                        		
		                        	
8.Observation of prime position and driving zones in process of tuberous root expanding and expression analysis of phytohormone relative genes in Rehmannia glutinosa.
Peng-fei WANG ; Xin-yu LI ; Ming-jie LI ; Lin LIU ; Xiao-Ran WANG ; Feng-Qing WANG ; Chun-qi LI ; Xin-Jian CHEN ; Zhong-yi ZHANG
China Journal of Chinese Materia Medica 2014;39(17):3245-3253
		                        		
		                        			
		                        			In order to study the development characteristics of Rehmannia glutinosa tuberous root expansion and reveal the regulation mechanism of the genes related to hormones in this process, R. glutinosa "wen-85" was used as the experimental material in this study. R. glutinosa tuberous roots of different developmental stages were collected to observe phenotype and tissue morphology using resin semi-thin sections method. The genes related to hormone biosynthesis and response were chosen from the transcriptome of R. glutinosa, which was previously constructed by our laboratory, their expression levels at different development stages were measured by real-time quantitative PCR. The results showed that the root development could be divided into six stages: seeding, elongation, pre-expanding, mid-expanding, late-expanding and maturity stage. The anatomic characteristics indicated that the fission of secondary cambium initiated the tuberous root expansion, and the continuous and rapid division of secondary cambium and accessory cambium kept the sustained and rapid expansion of tuberous root. In addition, a large number oleoplasts were observed in root on the semi-thin and ultra-thin section. The quantitative analysis suggested that the genes related to biosynthesis and response of the IAA, CK, ABA,ethylene, JA and EB were up-regulated expressed, meanwhile, GA synthesis and response genes were down-regulated expressed and the genes of GA negative regulation factors were up-regulated expressed. The maximum levels of most genes expression occurred in the elongation and pre-expansion stage, indicating these two stages were the key periods to the formation and development of tuberous roots. Oleoplasts might be the essential cytological basis for the formation and storage of the unique medicinal components in R. glutinosa. The results of the study are helpful for explanation of development and the molecular regulation mechanism of the tuberous root in R. glutinosa.
		                        		
		                        		
		                        		
		                        			Gene Expression Regulation, Developmental
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Gene Expression Regulation, Plant
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Lipid Droplets
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Microscopy, Electron, Transmission
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rehmannia
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			Time Factors
		                        			
		                        		
		                        	
9.Effects of 6-benzylaminopurine and α-naphthaleneacetic acid on growth and isoflavone contents of Pueraria phaseoloides hairy roots.
Chinese Journal of Biotechnology 2014;30(10):1573-1585
		                        		
		                        			
		                        			In order to study the effect of phytohormone on growth and isoflavones contents of Pueraria phaseoloides hairy roots, we cultured the hairy roots with different concentrations of 6-benzylaminopurine (6-BA) alone or in combination with α-naphthaleneacetic acid (NAA). Then we determined the effects of 6-BA alone or in combination with NAA on the growth and the contents of isoflavones compounds and levels of antioxidase activities of hairy roots by spectrophotometry. The results show that 6-BA inhibited the growth, and decreased biomass and total isoflavones compounds of P. phaseoloides hairy roots. Furthermore, the inhibition was increased with the concentrations of 6-BA. Compared with the controls, different concentrations of 6-BA in combination with NAA 2.0 mg/L could inhibit the growth of hairy roots and decrease the content of total isoflavone compounds, and also significantly enhanced the contents of soluble protein and levels of peroxidase (POD) activities, but decreased the activities of superoxide dismutase (SOD). DNA ladders detected by agarose gel electrophoresis can be observed after hairy roots of P. phaseoloides were cultured with 6-BA alone for 30 days, but can appear on the 20th day after culture with 6-BA in combination with NAA 2.0 mg/L. This result indicates that 6-BA or 6-BA in combination with NAA can both stimulate appearance of programmed cell death (PCD), and NAA may play a synergistic role on PCD.
		                        		
		                        		
		                        		
		                        			Benzyl Compounds
		                        			;
		                        		
		                        			Isoflavones
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Kinetin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Naphthaleneacetic Acids
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Pueraria
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Purines
		                        			
		                        		
		                        	
10.Effects of hormone treatment, light and temperatures on sprouting characteristics of Bupleurum chinense.
Zhi-Fei LI ; Xing-Fu CHEN ; Jin XU ; Jie MENG ; Tao JIANG ; Yu ZHANG ; Xing-Wang YANG
China Journal of Chinese Materia Medica 2014;39(8):1401-1406
		                        		
		                        			
		                        			Seeds of Bupleurum chinense cultivar, Zhongchai No. 1, were sowed in plastic pots which used the arable layer soil as the nursery bed and putted in the artificial climate incubator at various temperatures (15, 20, 25, 15-25 degrees C) and light (8,12 h) to germinate, respectively. The lower constant temperature (15 degrees ) and the higher constant temperature (25 "C) were not conducive to the sprouting characteristics of B. chinese. While they were able to enhance root activity to some extent; The seeding growth of B. chinese was significantly better in the variable temperature than correspondence in the constant temperature, significantly. The emergence speed, emergence index, vigor index and root activity of Bupleurum were improved under the 12 h of light-time, but the germination rate was not improved. The sprouting of Bupleurum's seeds could be improved to some extent by soaking with hormone, such as gibberellin, cytokinin, salicylic acid. Gibberellin promoted seeds' sprouting and seedings's root activity of Bupleurum, while salicylic acid increased the root activity of seeding. There is a significant influence of light, temperatures and hormone treatment on the germination of Zhongchai No. 1 seeds, and all three are remarkably interacted; It is beneficial to promote seed germination by the temperature (20 + 5) degrees C, lighting (8 h) and gibberellin concentration (10 x 10(-6)).
		                        		
		                        		
		                        		
		                        			Bupleurum
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Germination
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Gibberellins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Light
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Seeds
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Temperature
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail