1.Three new cucurbitane-type triterpenoid glycosides from Citrullus colocynthis and their anti-inflammatory activity.
Jun-Ling WU ; Yu-Shuang LIU ; Xi ZHAO ; Tao YUAN
China Journal of Chinese Materia Medica 2023;48(15):4124-4129
Three new cucurbitane-type triterpenoid glycosides were separated from the ethyl acetate extract of Citrullus colocynthis by a variety of chromatographic techniques. According to the data of NMR, HR-ESI-MS, and/or comparison with the reported data, the three novel cucurbitane-type triterpenoid glycosides were identified as colocynthenin E(1), colocynthenin G(2), and colocynthenin H(3). The cell inflammation model was established with RAW264.7 macrophages exposed to lipopolysaccharide and then used to determine the anti-inflammatory activities of the three compounds. Compounds 2 and 3 showed mild anti-inflammatory activities with the IC_(50) of 48.21 and 40.11 μmol·L~(-1), respectively, compared with that(IC_(50)=7.57 μmol·L~(-1)) of the positive control dexamethasone.
Citrullus colocynthis/chemistry*
;
Triterpenes/chemistry*
;
Glycosides/chemistry*
;
Plant Extracts/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
2.Chemical constituents and their α-glucosidase inhibitory activities of seeds of Moringa oleifera.
Liang CHEN ; Yin-Zhi CEN ; Yang-Li TU ; Xiang-Jie DAI ; Yong-Jun LI ; Xiao-Sheng YANG ; Lin-Zhen LI
China Journal of Chinese Materia Medica 2023;48(17):4686-4692
The chemical constituents of the seeds of Moringa oleifera were isolated and purified by using Sephadex LH-20, Toyo-pearl HW-40F, silica gel, ODS, and MCI column chromatography. The structures of compounds were identified by high-resolution mass spectrometry, ~1H-NMR, ~(13)C-NMR, HMQC, HMBC, and ~1H-~1H COSY, as well as physicochemical properties of compounds and literature data. Twelve compounds were isolated from 30% ethanol fraction of the seeds of M. oleifera and identified as ethyl-4-O-α-L-rhamnosyl-α-L-rhamnoside(1), ethyl-3-O-α-L-rhamnosyl-α-L-rhamnoside(2),(4-hydroxybenzyl)ethyl carbamate(3),(4-aminophenyl)acetic acid(4), ethyl-α-L-rhamnoside(5), methyl-α-L-rhamnoside(6), moringapyranosyl(7), 2-[4-(α-L-rhamnosyl)phenyl]methyl acetate(8), niaziridin(9), 5-hydroxymethyl furfural(10), 4-hydroxybenzeneacetamide(11), and 4-hydroxybenzoic acid(12). Among them, compounds 1 and 2 are two new compounds, compound 3 is a new natural product, and compounds 4-5 were yielded from Moringa plant for the first time. All compounds were evaluated for α-glucosidase inhibitory activity in vitro. Compound 10 showed excellent inhibitory activity with IC_(50) of 210 μg·mL~(-1).
Moringa oleifera/chemistry*
;
alpha-Glucosidases
;
Moringa
;
Seeds
;
Plant Extracts/pharmacology*
3.Effect of soil moisture on efficacy to eliminate dampness and relieve jaundice and flavonoid content of Sedum sarmentosum.
Meng-Tian YAN ; Hong-Zhuan SHI ; Qiao-Sheng GUO ; Hui-Ying JIANG ; Ya-Ting ZHU ; Zai-Biao ZHU
China Journal of Chinese Materia Medica 2023;48(21):5750-5758
The growth environment of medicinal plants plays an important role in the formation of their medicinal quality. However, there is a lack of combined analysis studying the close relationship between the growth environment, chemical components, and related biological activities of medicinal plants. Therefore, this study investigated the effect of different soil moisture treatments on the efficacy to eliminate dampness and relieve jaundice and the flavonoid content of Sedum sarmentosum, and explored their correlation. The flavonoid content in the decoction of S. sarmentosum growing under field conditions with soil moisture levels of 35%-40%(T1), 55%-60%(T2), 75%-80%(T3), and 95%-100%(T4) was compared. The effects of these treatments on liver function parameters, liver inflammation, and oxidative damage in mice with dampness-heat jaundice were evaluated, and the correlation between pharmacological indicators and flavonoid content was analyzed. The results showed that the total flavonoid and total phenolic acid content in the decoction of S. sarmentosum were highest in the T1 treatment, followed by the T3 treatment. The content of quercetin, kaempferol, and isorhamnetin was highest in the T2, T1, and T3 treatments, respectively. Among the different moisture treatments, the T3 group of S. sarmentosum effectively reduced the levels of serum ALT, AKP, TBIL, DBIL, TBA, as well as hepatic TNF-α and IL-6 in mice with jaundice, followed by T2 treatment, especially in reducing AST level. The T4 treatment had the poorest effect. Correlation analysis showed a significant negative correlation between AST, ALT, AKP levels in mice and the total content of quercetin and the three flavonoids. MDA showed a significant negative correlation with the total flavonoid content and kaempferol. TNF-α exhibited a significant negative correlation with the content of isorhamnetin. In conclusion, S. sarmentosum growing under field conditions with a soil moisture level of 75%-80% exhibited the best efficacy to eliminate dampness and relieve jaundice. This study provides insights for optimizing the cultivation mode of medicinal plants guided by pharmacological experiments.
Mice
;
Animals
;
Flavonoids/chemistry*
;
Plant Extracts/pharmacology*
;
Quercetin
;
Sedum/chemistry*
;
Kaempferols
;
Soil
;
Tumor Necrosis Factor-alpha
;
Plants, Medicinal/chemistry*
;
Jaundice/drug therapy*
4.A new xanthone from hulls of Garcinia mangostana and its cytotoxic activity.
Feng-Ning ZHAO ; Qi NIU ; Die XIAO ; Hao-Nan XU ; Hao-Xin WANG ; Rong-Lu BI ; Hong-Ping HE ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2023;48(21):5817-5821
Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 μmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 μmol·L~(-1).
Humans
;
Garcinia mangostana/chemistry*
;
HeLa Cells
;
Antineoplastic Agents
;
Magnetic Resonance Spectroscopy
;
Xanthones/pharmacology*
;
Garcinia/chemistry*
;
Plant Extracts/chemistry*
;
Molecular Structure
5.Comparison of active components in different parts of Perilla frutescens and its pharmacological effects.
Liang-Qi ZHANG ; Wen-Jiao LI ; Mei-Feng XIAO
China Journal of Chinese Materia Medica 2023;48(24):6551-6571
Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.
Perilla frutescens/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Fruit/chemistry*
;
Oils, Volatile/analysis*
;
Plant Leaves/chemistry*
6.Effects of Heliotropium indicum L. on Uterine Involution and Its Underlying Mechanisms: an in vivo and in vitro Study.
Sayah ONGSRICHAROENBHORN ; Pakanit KUPITTAYANANT ; Kanjana THUMANU ; Griangsak EUMKEB ; Suthida CHANLUN ; Pittaya PAPIROM ; Susan WRAY ; Sajeera KUPITTAYANANT
Chinese journal of integrative medicine 2023;29(11):980-988
OBJECTIVE:
To investigate the effect of Heliotropium indicum L. (H. indicum L.) on uterine involution and its underlying mechanisms in both in vivo and in vitro study.
METHODS:
For in vivo studies, postpartum rats were randomly divided into 2 groups (n=24 for each): control group and treated group which were orally and daily administered with ethanolic extract of H. indicum L. (250 mg/kg body weight) until day 5 of postpartum. Uteri were collected for analysis of weight, cross-sectional area, collagen cross-sectional area, and collagen content on postpartum day 1, 3, and 5 (n=8 for each) from both groups. Blood samples were collected for hepatotoxicity and 17β-estradiol (E2) measurement. For in vitro studies, the extract effects on uterine contraction at half maximum effective concentration of 2.50 mg/mL were studied in organ bath system for at least 20 min.
RESULTS:
Uterine parameters were significantly decreased after treated with extract of H. indicum L. (P<0.05). H. indicum L. extract significantly accelerated the reduction of those parameters and significantly decreased E2 (P<0.05). The extract facilitated uterine involution with no hepatotoxicity. H. indicum L. extract significantly stimulated uterine contraction (P<0.05) and synergized with oxytocin, prostaglandin and its precursor, linoleic acid. By investigating the different sequencing of the extract with the additional stimulants (added before or after), the two showed antagonistic effects, but still showed potentiated force when compared with control (without the stimulants).
CONCLUSIONS
The underlying mechanisms by which H. indicum L. facilitated uterine involution might be due to reducing E2 which induces collagenase activity, leading to decreases in uterine weight and size and stimulating uterine contraction. Our study provides new findings for future drug development for facilitating uterine involution with H. indicum L.
Pregnancy
;
Female
;
Rats
;
Animals
;
Heliotropium
;
Uterus
;
Plant Extracts/pharmacology*
;
Oxytocin
;
Collagen/pharmacology*
7.Six new coumarins from the roots of Toddalia asiatica and their anti-inflammatory activities.
Haoxuan HE ; Niping LI ; Yunqi FAN ; Qian HUANG ; Jianguo SONG ; Lixia LV ; Fen LIU ; Lei WANG ; Qi WANG ; Jihong GU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):852-858
We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 μmol·L-1, respectively.
Mice
;
Animals
;
Coumarins/chemistry*
;
Rutaceae/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
;
Plant Extracts/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
8.Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues.
Na CHEN ; Hua LI ; Jing MENG ; Yi-Fei YANG ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(1):148-159
A hyperuricemic rat model induced by adenine and ethambutol was established to investigate the anti-hyperuricemia activity and its mechanism of the flavonoid extract from saffron floral bio-residues. Sixty-seven SD rats were randomly divided into control group, model group, positive control group, and flavonoid extract groups(with 3 doses), respectively, and each group contained 11 or 12 rats. The hyperuricemic model was established by continuous oral administration of adenine(100 mg·kg~(-1)) and ethambutol(250 mg·kg~(-1)) for 7 days. At the same time, the positive control group was given allopurinol(20 mg·kg~(-1) per day) and the flavonoid extract groups were given the flavonoid extract at doses of 340, 170 and 85 mg·kg~(-1) per day, respectively. On day 8, rat serum, liver, kidney, and intestinal tissues were collected, and the levels of uric acid in serum and tissue, the xanthine oxidase activities and antioxi-dant activities in serum and liver were evaluated, and the kidney histopathology was explored. In addition, an untargeted serum metabolomics study was performed. According to the results, the flavonoid extract effectively reduced the uric acid levels in serum, kidney and ileum and inhibited the xanthine oxidase activities and elevated the antioxidant activities of serum and liver in hyperuricemic rat. At the same time, it reduced the levels of inflammation factors in kidney and protected renal function. Moreover, 68 differential metabolites of hyperuricemic rats were screened and most of which were lipids and amino acids. The flavonoid extract significantly retrieved the levels of differential metabolites in hyperuricemic rats, such as SM(d18:1/20:0), PC[18:0/18:2(92,12Z)], palmitic acid and citrulline, possibly through the following three pathways, i.e., arginine biosynthesis, glycine, serine and threonine metabolism, and histidine metabolism. To sum up, the flavonoid extract of saffron floral bio-residues lowered the uric acid level, increased the antioxidant activity, and alleviated inflammatory symptoms of hyperuricemic rats, which may be related to its inhibition of xanthine oxidase activity and regulation of serum lipids and amino acids metabolism.
Rats
;
Animals
;
Flavonoids/pharmacology*
;
Uric Acid
;
Crocus
;
Xanthine Oxidase
;
Ethambutol/adverse effects*
;
Rats, Sprague-Dawley
;
Hyperuricemia/drug therapy*
;
Kidney
;
Antioxidants/pharmacology*
;
Plant Extracts/adverse effects*
;
Amino Acids
;
Adenine/adverse effects*
;
Lipids
9.Optimization of ethanol reflux extraction process of Ziziphi Spinosae Semen- Schisandrae Sphenantherae Fructus based on network pharmacology combined with response surface methodology.
Mian HUANG ; Yu-Meng SONG ; Xi-Yue WANG ; Bing-Tao ZHAI ; Jiang-Xue CHENG ; Xiao-Fei ZHANG ; Dong-Yan GUO
China Journal of Chinese Materia Medica 2023;48(4):966-977
The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.
Ethanol
;
Molecular Docking Simulation
;
Network Pharmacology
;
Seeds/chemistry*
;
Ziziphus/chemistry*
;
Plant Extracts/chemistry*
;
Schisandra/chemistry*
;
Fruit/chemistry*
;
Technology, Pharmaceutical
10.Research progress on chemical constituents and pharmacological activities of Viola plants.
Min ZHANG ; You-Heng GAO ; Ye LI ; Ya-Qiong BI ; Chun-Hong ZHANG ; Min-Hui LI ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(5):1145-1175
There are 500 species of Viola(Violaceae) worldwide, among which 111 species are widely distributed in China and have a long medicinal history and wide varieties. According to the authors' statistics, a total of 410 compounds have been isolated and identified from plants of this genus, including flavonoids, terpenoids, phenylpropanoids, organic acids, nitrogenous compounds, sterols, saccharides and their derivatives, volatile oils and cyclotides. The medicinal materials from these plants boast anti-microbial, anti-viral, anti-oxidant and anti-tumor activities. This study systematically reviewed the chemical constituents and pharmacological activities of Viola plants to provide a basis for further research and clinical application.
Viola/chemistry*
;
Plant Extracts/pharmacology*
;
Flavonoids
;
Terpenes/pharmacology*
;
China

Result Analysis
Print
Save
E-mail