1.Protective Effect of Fresh/Dry Dandelion Extracts on APAP-Overdose-Induced Acute Liver Injury.
Yao ZHENG ; Lei LEI ; Shuai LIANG ; Jiao AI ; Xin DENG ; Yan-Qiu LI ; Tian-Pei ZHANG ; Shi-Biao PU ; Yong-Shen REN
Chinese journal of integrative medicine 2022;28(8):683-692
		                        		
		                        			OBJECITVIE:
		                        			To compare the liver protective activity of fresh/dried dandelion extracts against acetaminophen (APAP)-induced hepatotoxicity.
		                        		
		                        			METHODS:
		                        			Totally 90 Kunming mice were randomly divided into 10 groups according to body weight (9 mice for each group). The mice in the normal control and model (vehicle control) groups were administered sodium carboxymethyl cellulose (CMC-Na, 0.5%) only. Administration groups were pretreated with high and low-dose dry dandelion extract (1,000 or 500 g fresh herb dried and then decocted into 120 mL solution, DDE-H and DDE-L); low-, medium- and high-dose dandelion juice (250, 500, 1,000 g/120 mL, DJ-L, DJ-M, and DJ-H); fresh dandelions evaporation juice water (120 mL, DEJW); dry dandelion extract dissolved by pure water (1 kg/120 mL, DDED-PW); dry dandelion extract dissolved by DEJW (120 g/120 mL, DDED-DEJW) by oral gavage for 7 days at the dosage of 0.5 mL solution/10 g body weight; after that, except normal control group, all other groups were intraperitonealy injected with 350 mg/kg APAP to induce liver injury. Twenty hours after APAP administration, serum and liver tissue were collected and serum alanine aminotransferase (AST), aspartate transaminase (ALT), alkaline phosphatase (AKP), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) activities were quantified by biochemical kits; tumor necrosis factor (TNF-α), interleukin (IL)-2, and IL-1 β contents in liver tissue were determined by enzyme linked immunosorbent assay kits. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining; TUNEL Assay and Hoechst 33258 staining were applied for cell apoptosis evaluation. The expressions of heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related factor 2 (Nrf-2), caspase-9, B-cell leukemia/lymphoma 2 (Bcl-2), Bax and p-JNK were determined by Western blot analysis.
		                        		
		                        			RESULTS:
		                        			Pretreatment with fresh dandelion juice (FDJ, including DJ-L, DJ-M, DJ-H, DEJW and DDED-DEJW) significantly decreased the levels of serum ALT, AST, AKP, TNF-α and IL-1β compared with vehicle control group (P<0.05 or P<0.01). Additionally, compared with the vehicle control group, FDJ decreased the levels of hepatic MDA and restored GSH levels and SOD activity in livers (P<0.05 or P<0.01). FDJ inhibited the overexpression of pro-inflammatory factors including cyclooxygenase-2 and inducible nitric oxide synthase in the liver tissues (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that FDJ pretreatment inhibited activation of apoptotic signaling pathways via decreasing of Bax, and caspase-9 and JNK protein expression, and inhibited activation of JNK pathway (P<0.05 or P<0.01). Liver histopathological observation provided further evidence that FDJ pretreatment significantly inhibited APAP-induced hepatocyte necrosis, inflammatory cell infiltration and congestion.
		                        		
		                        			CONCLUSIONS
		                        			FDJ pretreatment protects against APAP-induced hepatic injury by activating the Nrf-2/HO-1 pathway and inhibition of the intrinsic apoptosis pathway, and the effect of fresh dandelion extracts was superior to dried dandelion extracts in APAP hepatotoxicity model mice.
		                        		
		                        		
		                        		
		                        			Acetaminophen/toxicity*
		                        			;
		                        		
		                        			Alanine Transaminase
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Caspase 9/metabolism*
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury/prevention & control*
		                        			;
		                        		
		                        			Dichlorodiphenyl Dichloroethylene/pharmacology*
		                        			;
		                        		
		                        			Glutathione/metabolism*
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Plant Extracts/therapeutic use*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			;
		                        		
		                        			Taraxacum/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Water/metabolism*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			
		                        		
		                        	
2.Study on protective effect of water extract from Sabia parviflora on liver injury in mice induced by acetaminophen.
Jian-Qiao LI ; Wen-Feng HUANG ; Hai-Bo HE ; Dong-Xiao ZHAO ; Jian-Zhong HU ; Shun-Guang LU ; Jia-Xin YE ; Kun ZOU
China Journal of Chinese Materia Medica 2020;45(6):1433-1439
		                        		
		                        			
		                        			The aim of this study was to observe the protective effect of water extract from Sabia parviflora on mice with acute liver injury induced by acetaminophen, and investigate its possible mechanism. Fifty-eight Kunming mice were divided into 6 groups, 8 in the normal group, 10 in the model group, 10 in the biphenyl diester group, and 10 each in the low, medium and high dose groups. After adaptive feeding for one week, the mice in normal group were intragastrically administered with an equal volume of 0.5% sodium carboxymethylcellulose sodium(CMC-Na), and the mice in other groups were intragastrically administered with corresponding drugs at 20 mL·kg~(-1) once a day. Then acetaminophen(200 mg·kg~(-1)) was administered after the above drug administration except the normal group. The behavior and signs of the experimental animals were observed every day and the samples were taken for experiments on the next day of the final administration. The liver mass and mass index were calculated. The blood was collected from the abdominal aorta and centrifuged to obtain the serum for detecting aspartate aminotransferase(AST) activity and alanine aminotransferase(ALT) activity. The liver tissue homogenate was used to detect superoxide dismutase(SOD) activity, glutathione(glutathione, r-glutamyl cysteingl+glycine, GSH) activity and malondialdehyde(MDA) content. Liver tissue was analyzed for histological analysis. The results showed that S. parviflora could alleviate the lipid peroxidation damage in the liver caused by acetaminophen, reduce the ALT and AST activities in serum, increase the levels of SOD and GSH in liver tissue, decrease the content of MDA in liver tissue, and inhibit the apoptosis. S. parviflora could also improve the live histopathological profile, protect liver cells and restore liver function. Among them, the high dose had the most significant effect and showed dose-effect relationship. This study indicated that S. parviflora had a significant protective effect on acetaminophen-induced liver injury in mice, and its mechanism may be related to its anti-oxidation effect and inhi-bitory effect on apoptosis.
		                        		
		                        		
		                        		
		                        			Acetaminophen/toxicity*
		                        			;
		                        		
		                        			Alanine Transaminase/metabolism*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aspartate Aminotransferases/metabolism*
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury/drug therapy*
		                        			;
		                        		
		                        			Liver/enzymology*
		                        			;
		                        		
		                        			Malondialdehyde/analysis*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Plant Extracts/pharmacology*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			
		                        		
		                        	
3.Dose-toxicity-effect relationship between licorice combined with rhubarb in purgation.
Yan-Yan CHEN ; Yu-Jie CAO ; Yu-Ping TANG ; Jia-Qian CHEN ; Shi-Jun YUE ; Jia-Jia LI ; Sai ZHANG ; Gui-Sheng ZHOU ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2019;44(10):2131-2138
		                        		
		                        			
		                        			The dose-toxicity-effect relationship between licorice combined with rhubarb in purgation was studied. A total of 108 ICR mice were divided into control group,model group,positive group,low,medium and high-dose rhubarb groups,and low,medium and high-dose rhubarb-liquorice decoction group. After 6 days of continuous administration of loperamide hydrochloride,the constipation model of mice was replicated,and each group was given lactulose,different doses of rhubarb and rhubarb-liquorice decoction for 14 days. After administration,the defecation characteristics,blood biochemistry,liver,kidney and colon pathological changes in each group were compared. Based on the objective weight given by factor analysis,the dose-toxicity-effect relationship was comprehensively analyzed by multi-index scoring method. Two common factors were extracted by factor analysis,representing effect and toxicity respectively. The results showed that rhubarb could exert a diarrhea effect at the dosage of 1/2,2 and 8 times of the high limit set forth in the Chinese Pharmacopoeia,increase the defecation volume and the intestinal tract propulsion rate,reduce the time of anal and the oral transmission,and increase the water content of feces. The combination with licorice could alleviate its diarrhea effect,especially at the dosage of 1/2 times of the high limit set forth in the Chinese Pharmacopoeia. However,rhubarb showed obvious hepatic and colon toxicities at the dosage of 2 and 8 times of the high limit set forth in the Chinese Pharmacopoeia,and the combination with licorice could significantly reduce its toxicity. It shows that licorice has a " mediating" effect on rhubarb by alleviating the purgation property and reducing the toxicity.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cathartics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Glycyrrhiza
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rheum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Toxicity Tests
		                        			
		                        		
		                        	
4.Rapid discovery and identification of the anti-inflammatory constituents in Zhi-Shi-Zhi-Zi-Chi-Tang.
Hai-Qiang WANG ; Yun-Xiang ZHU ; Yi-Ning LIU ; Ruo-Liu WANG ; Shu-Fang WANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):308-320
		                        		
		                        			
		                        			The anti-inflammatory active ingredients of Zhi-Shi-Zhi-Zi-Chi-Tang (ZSZZCT), a traditional Chinese medicine formula, were predicted and identified using an approach based on activity index, LC-MS, semi-preparative LC and NMR. Firstly, the whole extract of ZSZZCT was analyzed using liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) and liquid chromatography - ion trap mass spectrometry (LC-IT-MS), 79 constituents were detected and 39 constituents were identified unambiguously or tentatively. Subsequently, the whole extract of the formula was separated into multiple components and the activity index method was used to calculate index values of the 79 constituents by integrating the chemical and pharmacological information of multiple components. Four polymethoxyl flavones were predicted as the major active constituents according to the activity index values. Furthermore, three polymethoxyl flavones were prepared using the strategy with semi-preparative LC guided by LC-MS, and their anti-inflammatory activities were validated. The results show that three polymethoxyl flavones with higher positive index values, i.e., 3, 5, 6, 7, 8, 3', 4'-heptamethoxyflavone, 3-hydroxynobiletein and tangeretin had significant anti-inflammatory effects. In conclusion, the predicted results indicated that the activity index method is feasible for the accurate prediction of active constituents in TCM formulae.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Flavones
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			
		                        		
		                        	
5.Jatrogricaine A: a new diterpenoid with a 5/6/6/4 carbon ring system from the stems of Jatropha podagrica.
Lin CHEN ; Jia-Luo HUANG ; Lei ZHANG ; Hai-Yan TIAN ; Sheng YIN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):298-302
		                        		
		                        			
		                        			Jatrogricaine A (1), a new diterpenoid possessing a 5/6/6/4 carbon ring system, together with eight known diterpenoids (2-9) were isolated from the stems of Jatropha podagrica. Their structures were elucidated by extensive spectroscopic methods and the absolute configuration of 1 was determined by single crystal X-ray diffraction analysis. All compounds were evaluated for their anti-inflammatory activities in vitro, and compound 3 showed significant inhibitory effects against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells with an IC of 13.44 ± 0.28 μmol·L, being comparable to the positive control, quercetin (IC 17.00 ± 2.10 μmol·L).
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Carbon
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Inhibitory Concentration 50
		                        			;
		                        		
		                        			Jatropha
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Stems
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			
		                        		
		                        	
6.Eight new cytotoxic annonaceous acetogenins from the seeds of Annona squamosa.
Cheng-Yao MA ; Jia-Hui LU ; Xiang LI ; Xiao LIU ; Jian-Wei CHEN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):291-297
		                        		
		                        			
		                        			Eight new annonaceous acetogenins, squamotin A-D (1-4), annosquatin IV-V (5 and 6), muricin O (7) and squamosten B (8), together with four known ones (9-12) were isolated from the seeds of Annona squamosa. Their structures were elucidated by chemical methods and spectral data. The inhibitory activities of compound 1-9 against three multidrug resistance cell lines were evaluated. All tested compounds showed strong cytotoxicity.
		                        		
		                        		
		                        		
		                        			Acetogenins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Annona
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Antineoplastic Agents, Phytogenic
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Seeds
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
7.Sasa veitchii extract protects against carbon tetrachloride-induced hepatic fibrosis in mice.
Hiroki YOSHIOKA ; Tsunemasa NONOGAKI ; Shiori FUKAYA ; Yoshimi ICHIMARU ; Akito NAGATSU ; Masae YOSHIKAWA ; Hirohisa FUJII ; Makoto NAKAO
Environmental Health and Preventive Medicine 2018;23(1):49-49
		                        		
		                        			BACKGROUND:
		                        			The current study aimed to investigate the hepatoprotective effects of Sasa veitchii extract (SE) on carbon tetrachloride (CCl)-induced liver fibrosis in mice.
		                        		
		                        			METHODS:
		                        			Male C57BL/6J mice were intraperitoneally injected with CCl dissolved in olive oil (1 g/kg) twice per week for 8 weeks. SE (0.1 mL) was administered orally once per day throughout the study, and body weight was measured weekly. Seventy-two hours after the final CCl injection, mice were euthanized and plasma samples were collected. The liver and kidneys were collected and weighed.
		                        		
		                        			RESULTS:
		                        			CCl administration increased liver weight, decreased body weight, elevated plasma alanine aminotransferase, and aspartate aminotransferase and increased liver oxidative stress (malondialdehyde and glutathione). These increases were attenuated by SE treatment. Overexpression of tumor necrosis factor-α was also reversed following SE treatment. Furthermore, CCl-induced increases in α-smooth muscle actin, a marker for hepatic fibrosis, were attenuated in mice treated with SE. Moreover, SE inhibited CCl-induced nuclear translocation of hepatic nuclear factor kappa B (NF-κB) p65 and phosphorylation of mitogen-activated protein kinase (MAPK).
		                        		
		                        			CONCLUSION
		                        			These results suggested that SE prevented CCl-induced hepatic fibrosis by inhibiting the MAPK and NF-κB signaling pathways.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carbon Tetrachloride
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Liver Cirrhosis
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Protective Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Sasa
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
8.New steroidal alkaloid and furostanol glycosides isolated from Solanum lyratum with cytotoxicity.
Yun-Ling XU ; Jia LV ; Wei-Fang WANG ; Yue LIU ; Ya-Juan XU ; Tun-Hai XU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):499-504
		                        		
		                        			
		                        			Two previously undescribed steroidal compounds, 16, 23-epoxy-22, 26-epimino-cholest-22(N), 23, 25(26)-trien-3β-ol-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-(25R)-5α-furost-20(22)-en-3β, 26-diol (2), together with 7 known ones including 26-O-β-D-glucopyranosyl-(25R)-5, 20(22)-dien-furost-3β, 26-diol (3), (25R)-5-en-spirost-3β-ol-O-β-D-glucopyranosyl-(1→4)-[α-L-rhmanopyranosyl-(1→2)]-β-D-galactopyranoside (4), funkioside D (5), aspidistrin (6), tigogenin-3-O-β-D-lucotrioside (7), desglucolanatigonin II (8), and degalactotigonin (9), were isolated from Solanum lyratum Thunb. Their cytotoxic activities were tested in two cancer cell lines by MTT method. One of the steroidal glycosides (6) showed significant cytotoxic activity against gastric cancer SGC7901 and liver cancer BEL-7402 cells.
		                        		
		                        		
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Glycosides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inhibitory Concentration 50
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Phytosterols
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Solanum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Sterols
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			
		                        		
		                        	
9.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
		                        		
		                        			
		                        			The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Antiparkinson Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type I
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Oxidopamine
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Paeonia
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Parkinsonian Disorders
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Phytotherapy
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Substantia Nigra
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Tyrosine 3-Monooxygenase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Rhododendron Molle (Ericaceae): phytochemistry, pharmacology, and toxicology.
Yong-Qing CAI ; Jian-Hui HU ; Jie QIN ; Tao SUN ; Xiao-Li LI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):401-410
		                        		
		                        			
		                        			Rhododendron molle G. Don, belonging to the Ericaceae family, is a traditional Chinese medicinal plant with a wide spectrum of pharmacological effects. This paper aimed to review the phytochemistry, pharmacology and toxicology of R. molle, and to discuss the tendency of future investigations on this plant. A systematic review of literature about R. molle was carried out using resources including classic books about Chinese herbal medicine, and scientific data bases including CNKI, Pubmed, SciFinder, Scopus, and Web of Science. Over 67 compounds, including diterpenes, triterpenes, flavonoids, and lignans, had been extracted and identified from R. molle. The extracts/monomers isolated from the root, flower and fruits of this plant were used as effective agents for treating pains, inflammatory diseases, hypertension, and pest, etc. In addition, diterpenes, such as rhodojaponin III, were considered as the toxic agents associated with the toxicities of this plant. These findings will be significant for the discovery of new drugs from this plant and full utilization of R. molle.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Phytotherapy
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Rhododendron
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail