2.Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis.
Jiansong HUANG ; Xin HUANG ; Yang LI ; Xia LI ; Jinghan WANG ; Fenglin LI ; Xiao YAN ; Huanping WANG ; Yungui WANG ; Xiangjie LIN ; Jifang TU ; Daqiang HE ; Wenle YE ; Min YANG ; Jie JIN
Frontiers of Medicine 2022;16(3):416-428
		                        		
		                        			
		                        			Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
		                        		
		                        		
		                        		
		                        			Acrylamides/pharmacology*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Platelets/drug effects*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Megakaryocytes/drug effects*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Piperazines/pharmacology*
		                        			;
		                        		
		                        			Pyrimidines/pharmacology*
		                        			
		                        		
		                        	
3.Berberine inhibits erastin-induced ferroptosis of mouse hippocampal neuronal cells possibly by activating the Nrf2-HO-1/GPX4 pathway.
Qing Yang HUANG ; Dong Dong JI ; Xiu Yun TIAN ; Lin Yan MA ; Xiao Jin SUN
Journal of Southern Medical University 2022;42(6):937-943
		                        		
		                        			OBJECTIVE:
		                        			To explore the mechanism by which berberine inhibits ferroptosis of mouse hippocampal neuronal cells (HT22).
		                        		
		                        			METHODS:
		                        			Cultured HT22 cells were pretreated with 30 or 60 μmol/L berberine for 2 h before exposure to 0.5 μmol/L erastin for 8 h, and the cell proliferation, intracellular ferric iron level, changes in intracellular reactive oxygen species (ROS) and cell apoptosis were detected using CCK-8, Fe2+ fluorescent probe, fluorescent dye (DAPI) and fluorescent probe (H2DCFH-DA). RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Nrf2, HO-1 and GPX4 in the cells. We further tested the effects of treatments with 2 μmol/L ML385 (a Nrf2 inhibitor), 60 μmol/L berberine and erastin in the cells to explore the protective mechanism of berberine against erastin-induced ferroptosis in the neuronal cells.
		                        		
		                        			RESULTS:
		                        			Treatment with 0.5 μmol/L erastin significantly lowered the viability of HT22 cells (P < 0.05) and increased the production of ROS, cell apoptosis rate and ferric iron level (P < 0.05). Pretreatment with 30 and 60 μmol/L berberine both significantly increased the vitality of erastin-exposed cells (P < 0.05) and lowered the levels of intracellular ROS and ferric iron content (P < 0.05). RT-qPCR and Western blotting showed that berberine obviously promoted the expressions of Nrf2, HO-1 and GPX4 in the cells (P < 0.05), and treatment with ML385 significantly inhibited the Nrf2-HO-1/GPX4 pathway, increased intracellular ROS and ferric iron contents and mitigated the protective effect of berberine against erastin-induced ferroptosis (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Berberine can inhibit erastin-induced ferroptosis in HT22 cells possibly by activating the Nrf2-HO-1/ GPX4 pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Berberine/pharmacology*
		                        			;
		                        		
		                        			Ferroptosis
		                        			;
		                        		
		                        			Fluorescent Dyes
		                        			;
		                        		
		                        			Hippocampus/metabolism*
		                        			;
		                        		
		                        			Iron/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Piperazines
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism*
		                        			
		                        		
		                        	
4.Blocking ERK signaling pathway lowers MMP-9 expression to alleviate brain edema after traumatic brain injury in rats.
Zhaohua TANG ; Wentao WANG ; Zili LIU ; Xiaochuan SUN ; Zhengbu LIAO ; Feilan CHEN ; Guangyuan JIANG ; Gang HUO
Journal of Zhejiang University. Medical sciences 2020;40(7):1018-1022
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of blocking the activation of ERK pathway on the expression of matrix metalloproteinase-9 (MMP-9) and the formation of cerebral edema in SD rats after brain injury.
		                        		
		                        			METHODS:
		                        			Ninety SD rats were randomly divided into 3 equal groups, including a sham-operated group, modified Feeney's traumatic brain injury model group, and ERK inhibition group where the ERK inhibitor SCH772984 (500 μg/kg) was injected via the femoral vein 15 min before brain trauma. At 2 h and 2 days after brain trauma, the permeability of blood-brain barrier was assessed by Evans blue method, the water content of the brain tissue was determined, and the phosphorylation level of ERK and the expression level of MMP-9 mRNA and protein were measured by RT-PCR and Western blotting.
		                        		
		                        			RESULTS:
		                        			Compared with the sham-operated group, the rats with brain trauma exhibited significantly increased level of ERK phosphorylation at 2 h and significantly increased expression of MMP-9 mRNA and protein 2 days after the injury ( < 0.01). Treatment with the ERK inhibitor significantly decreased the phosphorylation level of ERK after the injury ( < 0.01), suppressed over-expression of MMP-9 mRNA and protein 2 days after the injury ( < 0.01). The permeability of blood-brain barrier increased significantly 2 h after brain trauma ( < 0.05) and increased further at 2 days ( < 0.01); the water content of the brain did not change significantly at 2 h ( > 0.05) but increased significantly 2 d after the injury ( < 0.01). Treatment with the ERK inhibitor significantly lowered the permeability of blood-brain barrier and brain water content after brain trauma ( < 0.01).
		                        		
		                        			CONCLUSIONS
		                        			Blocking the activation of ERK pathway significantly reduced the over-expression of MMP-9 and alleviates the damage of blood-brain barrier and traumatic brain edema, suggesting that ERK signaling pathway plays an important role in traumatic brain edema by regulating the expression of MMP-9.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Brain Edema
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			Brain Injuries, Traumatic
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Gene Expression Regulation, Enzymologic
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Indazoles
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Piperazines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			
		                        		
		                        	
5.Palbociclib induces cell cycle arrest and senescence of human renal tubular epithelial cells
Liuwei HUANG ; Yanting SHEN ; Chongbin LIU ; Caizhen LI ; Jun WANG
Journal of Southern Medical University 2020;40(12):1784-1792
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of palbociclib on cell cycle progression and proliferation of human renal tubular epithelial cells.
		                        		
		                        			METHODS:
		                        			Human renal tubular epithelial cell line HK-2 was treated with 1, 5, 10, and 20 μmol/L of palbociclib, and the changes in cell proliferation and viability were examined by cell counting and CCK8 assay. EDU staining was used to assess the proliferation of HK-2 cells following palbiciclib treatment at different concentrations for 5 days. The effect of palbociclib on cell cycle distribution of HK-2 cells was evaluated using flow cytometry. SA-β-Gal staining and C12FDG senescence staining were used to detect senescence phenotypes of HK-2 cells after palbociclib treatment at different concentrations for 5 days. The relative mRNA expression levels of P16, P21, and P53 and the genes associated with senescence-related secretion phenotypes were detected by RT-PCR, and the protein expressions of P16, P21 and P53 were detected by Western blotting.
		                        		
		                        			RESULTS:
		                        			Palbociclib inhibited HK-2 cell proliferation and induced cell cycle arrest in G1 phase. Compared with the control cells, HK-2 cells treated with high-dose (10 μmol/L) palbociclib exhibited significantly suppressed cell proliferation activity, and the inhibitory effect was the most obvious on day 5 (
		                        		
		                        			CONCLUSIONS
		                        			Palbociclib induces HK-2 cell senescence by causing cell growth arrest and delaying cell cycle progression.
		                        		
		                        		
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			Cell Cycle Checkpoints
		                        			;
		                        		
		                        			Cellular Senescence
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Piperazines/pharmacology*
		                        			;
		                        		
		                        			Pyridines/pharmacology*
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53/genetics*
		                        			
		                        		
		                        	
6.Effects of FK866 on migration of A549 cells and related mechanism.
Xian XIE ; Xiaofang XU ; Qi WANG ; Yunbi LU ; Ming WU ; Weiping ZHANG
Journal of Zhejiang University. Medical sciences 2018;47(1):1-9
		                        		
		                        			OBJECTIVE:
		                        			: To investigate the effect of nicotinamide phosphoribosyltransferase (NAMPT) inhibitor FK866 on the migration of human non-small cell cancer A549 cells and related mechanism.
		                        		
		                        			METHODS:
		                        			: The inhibition effect of FK866 on A549 cells was tested by MTT assay. A549 cells were treated with 1.0 and 10.0 nmol/L FK866, and the cell migration was evaluated by modified wound scratch assay. The mRNA expression of E-cadherin and vimentin was detected by real-time RT-PCR, and the expression of ERK1/2 and pERK1/2 was determined by Western blotting.
		                        		
		                        			RESULTS:
		                        			: FK866 inhibited the proliferation of A549 cells in a time-and concentration-dependent manner; after treatment for 72 h, the IC of FK866 was 9.55 nmol/L. When 1.0 nmol/L or 10.0 nmol/L FK866 was continuously applied 48 h before and 48 h after a scratch was made in wound scratch assay, the migration of A549 cells was significantly inhibited. However, when the FK866 was applied only 48 h after the scratch, the migration of A549 cells was inhibited by 10.0 nmol/L but not by 1.0 nmol/L FK866. The mRNA expression of E-cadherin and vimentin, and the activated ERK1/2 were significantly increased after 1.0 nmol/L FK866 treatment for 72 h. The pretreatment with nicotinamide adenine dinucleotide (NAD) precursor nicotinamide mononucleotide(1.0 mmol/L) or ERK1/2 inhibitor U0126 (10.0 μmol/L) reversed the up-regulation of E-cadherin and vimentin expression induced by FK866.
		                        		
		                        			CONCLUSIONS
		                        			s: Low concentration of FK866 decreases the migration of A549 cells through the inhibition of NAD level, activation of ERK1/2 and up-regulation of E-cadherin expression. However, it also up-regulates the expression of vimentin, indicating that it may have dual effects on the migration of tumor cells.
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Cadherins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Morpholines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Neurokinin-1 Receptor Antagonists
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Nicotinamide Phosphoribosyltransferase
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Piperazines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Vimentin
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
7.Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells.
Chenlong ZHAO ; Minghui LIU ; Yongwen LI ; Hongbing ZHANG ; Ying LI ; Hao GONG ; Yin YUAN ; Weiting LI ; Hongyu LIU ; Jun CHEN
Chinese Journal of Lung Cancer 2018;21(5):375-382
		                        		
		                        			BACKGROUND:
		                        			Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells.
		                        		
		                        			METHODS:
		                        			EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991.
		                        		
		                        			RESULTS:
		                        			PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells.
		                        		
		                        			CONCLUSIONS
		                        			PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.
		                        		
		                        		
		                        		
		                        			Angiogenesis Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 4
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 6
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Piperazines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Pyridines
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.P53-mediated Regulatory Mechanism of Ran Transcription in Multiple Myeloma Cells.
Lei YUAN ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2016;24(3):760-764
OBJECTIVETo investigate the role of p53 on ran transcription in myeloma cells.
METHODSUsing real-time fluorescence quantitative PCR, the ran transcription level was measured in 8 human myeloma cell lines such as OPM-2, RPMI-8226, U-266, KAS6/1, ANML-6, H-929, MM1.S and MOLP-8. The ran transcription level and P53 expression were detected by Q-PCR in MM1.S treated with Nutlin-3a for 24, 48 and 72 hours, respectively. The Western blot was used to detect the expression levels of ran and P53 proteins, and ran expression level after transfection of MM1.S cells using different concentration of plasmids which express the P53 luciferase reporter.
RESULTSH-929 and MM1.S cells showed the highest ran transcription level among the above-mentioned 8 cell lines (P<0.05). After treatment with Nutlin-3a, ran transcription level in MM1.S cells decreased (P<0.05), (r=-1.00, P=0.04) and P53 expression increased (r=1.00, P=0.06) in time-dependence manner. The detection by p53 luciferase reporter showed that the ran transcription decreased and the plasmid increased to 25 ng (P<0.05).
CONCLUSIONThis study demonstrated that ran is a target gene regulated by P53 in myeloma cells for the first time.
Cell Line, Tumor ; Humans ; Imidazoles ; pharmacology ; Multiple Myeloma ; genetics ; metabolism ; Piperazines ; pharmacology ; Tumor Suppressor Protein p53 ; genetics ; metabolism ; ran GTP-Binding Protein ; genetics ; metabolism
9.Effect of 5-HT1A receptors in the hippocampal DG on active avoidance learning in rats.
Feng-ze JIANG ; Jing LV ; Dan WANG ; Hai-ying JIANG ; Ying-shun LI ; Qing-hua JIN
Chinese Journal of Applied Physiology 2015;31(1):44-48
OBJECTIVETo investigate the effects of serotonin (5-HTIA) receptors in the hippocampal dentate gyrus (DG) on active avoidance learning in rats.
METHODSTotally 36 SD rats were randomly divided into control group, antagonist group and agonist group(n = 12). Active avoidance learning ability of rats was assessed by the shuttle box. The extracellular concentrations of 5-HT in the DG during active avoidance conditioned reflex were measured by microdialysis and high performance liquid chromatography (HPLC) techniques. Then the antagonist (WAY-100635) or agonist (8-OH-DPAT) of the 5-HT1A receptors were microinjected into the DG region, and the active avoidance learning was measured.
RESULTS(1) During the active avoidance learning, the concentration of 5-HT in the hippocampal DG was significantly increased in the extinction but not establishment in the conditioned reflex, which reached 164.90% ± 26.07% (P <0.05) of basal level. (2) The microinjection of WAY-100635 (an antagonist of 5-HT1A receptor) into the DG did not significantly affect the active avoidance learning. (3) The microinjection of 8-OH-DPAT(an agonist of 5-HT1A receptor) into the DG significantly facilitated the establishment process and inhibited the extinction process during active avoidance conditioned reflex.
CONCLUSIONThe data suggest that activation of 5-HT1A receptors in hipocampal DG may facilitate active avoidance learning and memory in rats.
8-Hydroxy-2-(di-n-propylamino)tetralin ; pharmacology ; Animals ; Avoidance Learning ; Dentate Gyrus ; physiology ; Piperazines ; pharmacology ; Pyridines ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Serotonin, 5-HT1A ; physiology ; Serotonin ; physiology ; Serotonin Receptor Agonists ; pharmacology
10.Apoptosis-inducing effect of tetrandrine and imatinib on K562/G01 cells and its related mechanism.
Duo-Xuan SHI ; Liang-Ming MA ; Yu-Jin LU ; Bo BAI
Journal of Experimental Hematology 2014;22(3):723-728
		                        		
		                        			
		                        			This study was purposed to explore the apoptosis-inducing effect of tetrandrine (Tet) and imatinib (IM) alone or both combined on K562/G01 cells and their mechanism. MTT assay was used to detect the inhibitory effect of drugs on cell growth, flow cytometry was used to detect the cell cycle and apoptosis rate. The expression of caspase-3/BCL-2 mRNA was determined by real time-PCR, and the expression of caspase-3/BCL-2 protein was assayed by Western blot. The results showed that after being treated by 1.0 µmol/L IM or 1.5 µmol/L Tet alone and combination of these two drugs for 48 h, the inhibitory rate was (22.74 ± 0.05)%, (20.34 ± 0.57)% and (44.28 ± 0.60)%, respectively, suggesting that inhibitory effect of two drug combination was more obvious. The arrest of cell cycle at G1/S phase could be observed after Tet treatment. Early apoptosis rate was (7.81 ± 0.16) %, (14.10 ± 0.28) % respectively after being treated by combination of 1.5 µmol/L and 3.0 µmol/L Tet with 1.0 µmol/L IM. After being treated with Tet alone, FQ-PCR and Western blot showed that the expressions of caspase-3 mRNA and caspase-3 protein were up-regulated, the expressions of BCL-2 mRNA and protein were down-regulated, the effect of both drug combination was more significant. It is concluded that IM or Tet alone can induce apoptosis of K562/G01. Combination of IM with Tet shows obvious synergistic effect, mechanism of which may associate with up-regulation of caspase-3 mRNA and protein expressions, and down-regulation of BCL-2 mRNA and protein expressions.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Benzamides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Benzylisoquinolines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Gene Expression Regulation, Leukemic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Imatinib Mesylate
		                        			;
		                        		
		                        			K562 Cells
		                        			;
		                        		
		                        			Piperazines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pyrimidines
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail