1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
3. Mechanism of Wen Shen Xuan Bi Tang in treatment of osteoporosis based on network pharmacology and animal experimental verification
Hai-Ping WANG ; Zhao-Feng YUAN ; Tian-Wei XIA ; Chao ZHANG ; Ji-Rong SHEN ; Hai-Ping WANG
Chinese Pharmacological Bulletin 2024;40(2):344-351
Aim To predict and validate the mechanism of wenshen xuanbi tang(WSXBT) in treatment of osteoporosis (OP) based on network pharmacology, molecular docking techniques and in vivo experimental techniques. Methods Network pharmacology was used to screen the key ingredients and core targets of WSXBT for the treatment of osteoporosis. Metascape database was used for gene ontology (GO) biological process enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) signaling pathway enrichment analysis of core targets. AutoDockTools 1. 5. 7 software was applied in molecular docking to simulate the binding activity of key active ingredients to core targets. To study the efficacy of WSXBT on rats with osteoporosis and to verify the related targets and pathways, rat models of osteoporosis were established by excising the bilateral ovaries of rats. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum OPG, PINP and RANKL content. Biomechanical tester was applied to test the biomechanics of rat femurs. Micro-CT was applied to detect the femoral bone density. Then, Western blot was employed to measure the protein expression levels of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt). Results A total of 156 active ingredients of WSXBT were screened, involving 229 potential targets, 23 core targets and 145 signaling pathways. The molecular docking results showed that five key ingredients, including quercetin, kaempferol, naringenin, isobavachin and licochalcone a, possessed good binding ability to the core targets of PIK3R1 and AKT1. The results of in vivo experiments showed that WSXBT could significantly increase bone density, improve bone tissue microstructure, enhance femur biomechanics and increase PINP expression and OPG/RANKL ratio in rats with osteoporosis. Results of WB showed that WSXBT significantly increased p-PI3K/PI3K and p-Akt/Akt ratios. Conclusions WSXBT could improve bone mineral density in postmenopausal osteoporotic rats through PI3K/ Akt signaling pathway and increasing OPG/RANKL ratio.
4.Research progress of natural product evodiamine-based antitumor drug design strategies
Zhe-wei XIA ; Yu-hang SUN ; Tian-le HUANG ; Hua SUN ; Yu-ping CHEN ; Chun-quan SHENG ; Shan-chao WU
Acta Pharmaceutica Sinica 2024;59(3):532-542
Natural products are important sources for the discovery of anti-tumor drugs. Evodiamine is the main alkaloid component of the traditional Chinese herb Wu-Chu-Yu, and it has weak antitumor activity. In recent years, a number of highly active antitumor candidates have been discovered with a significant progress. This article reviews the research progress of evodiamine-based antitumor drug design strategies, in order to provide reference for the development of new drugs with natural products as leads.
5.Efficiency analysis of digital three-dimensional reconstruction model of pelvic CTA in judging the origin of female giant pelvic mass
Ruolan CHEN ; Xiaochun HUANG ; Wenjuan MA ; Xia ZUO ; Qing LIU ; Panpan WANG ; Kuiwei ZHANG ; Peng LYU ; Chunlin CHEN ; Ping LIU
Chongqing Medicine 2024;53(4):565-570
Objective To explore the value of pelvic CT angiography(CTA)digital three-dimensional reconstruction model(abbreviated as"three-dimensional model")in the diagnosis of female pelvic mass.Methods A total of 98 patients with pelvic mass who were hospitalized and operated in Xi'an People's Hos-pital(Xi'an Fourth Hospital)from January 2021 to April 2023 were selected.All patients underwent B-ultra-sound and CTA examination before operation,and the original data of CTA were collected.The digital three-dimensional model of pelvic mass was established by three-dimensional reconstruction software,and the source of pelvic mass was judged according to the blood supply of pelvic mass.Taking postoperative pathological di-agnosis as the gold standard,the coincidence rate between different preoperative diagnosis methods(B-ultra-sound,CTA examination and three-dimensional model)was compared.The receiver operating characteristic(ROC)curve was plotted to evaluate the efficacy of different preoperative diagnostic methods in judging the ovarian origin of pelvic tumors.Results A total of 130 pelvic masses were included in 98 patients,and the average maximum diameter of the mass was(71.61±3.03)mm,including 83 ovarian masses and 47 non-ovarian masses.Taking postoperative pathological diagnosis as the gold standard,the diagnostic coincidence rate of the preoperative three-dimensional model was 72.31%,which was higher than that of B-ultrasound(58.46%)and CTA(52.31%),and the differences were statistically significant(P<0.001).The sensitivity,specificity,positive predictive value,negative predictive value,accuracy,Kappa value,and area under the ROC curve were 79.51%,91.49%,94.29%,71.67%,83.85%,0.67 and 0.855,respectively,when the three-dimensional model showed that the blood supply of the mass originated from ovarian artery or uterine artery-ovarian branch.Conclusion The three-dimensional model of pelvic CTA can directly display the blood supply source,characteristics of mass,and the relationship between mass and adjacent organs,which can guide the clinical treatment.It has certain clinical value to judge the ovarian origin of pelvic mass by using ovarian artery and uterine artery-ovarian branch.
6.Clinical Study on LUO's Nephropathy Recipe Ⅲ Combined with Conventional Western Medicine in Treating Stage 3-5 Non-dialysis Chronic Kidney Disease of Spleen-Kidney Deficiency with Turbidity-Toxin-Stasis Obstruction Type
Xuan ZHU ; Xi-Xia CHEN ; Ru-Ping WANG ; Yong-Qian HE ; Chun-Peng WANG ; Ren LUO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):815-821
Objective To investigate the clinical effect of LUO's Nephropathy Recipe Ⅲ(composed of Sargassum,Astragali Radix,Salviae Miltiorrhizae Radix et Rhizoma,Rehmanniae Radix Praeparata,calcined Ostreae Concha,Houttuyniae Herba,Schizonepetae Spica,etc.)combined with conventional western medicine in treating stage 3-5 non-dialysis chronic kidney disease(CKD)of spleen-kidney deficiency with turbidity-toxin-stasis obstruction type.Methods A total of 180 patients with stage 3-5 non-dialysis CKD of spleen-kidney deficiency with turbidity-toxin-stasis obstruction type were randomly divided into observation group and control group,with 90 cases in each group.The control group was given conventional western medicine for symptomatic treatment,and the observation group was treated with LUO's Nephropathy RecipeⅢon the basis of treatment for the control group.The course of treatment for the two groups covered one month.Before and after treatment,the levels of serum inflammatory factors,renal function indicators and urine protein parameters in the two groups were observed.After treatment,the clinical efficacy and safety of the two groups were evaluated.Results(1)After one month of treatment,the total effective rate in the observation group was 95.56%(86/90)and that in the control group was 81.11%(73/90).The intergroup comparison(tested by chi-square test)showed that the efficacy of the observation group was significantly superior to that of the control group(P<0.01).(2)After treatment,the serum levels of inflammatory factors of transforming growth factor β1(TGF-β1),monocyte chemotactic protein 1(MCP-1),and tumor necrosis factor α(TNF-α)in the two groups were significantly decreased compared with those before treatment(P<0.05),and the decrease in the observation group was significantly superior to that in the control group(P<0.01).(3)After treatment,the levels of renal function indicators of blood urea nitrogen(BUN),serum creatinine(Scr),blood uric acid(UA),and cystatin C(Cys-C)in the two groups were significantly decreased compared with those before treatment(P<0.05),and the decrease in the observation group was significantly superior to that in the control group(P<0.01).(4)After treatment,the levels of 24-hour urine protein quantification and urine microalbumin in the two groups were significantly decreased compared with those before treatment(P<0.05),and the decrease in the observation group was significantly superior to that in the control group(P<0.01).(5)The incidence of adverse reactions in the observation group was 4.44%(4/90),which was significantly lower than that of 15.56%(14/90)in the control group,and the difference was statistically significant between the two groups(P<0.05).Conclusion LUO's Nephropathy Recipe Ⅲ combined with conventional western medicine exerts satisfactory efficacy in treating stage 3-5 non-dialysis CKD patients with spleen-kidney deficiency with turbidity-toxin-stasis obstruction syndrome type,and the therapy can significantly alleviate the inflammatory response,improve the renal function,decrease the urinary protein excretion of the patients,with high safety profile.
7. Expression and distribution of brain⁃derived neurotrophic factor in different cerebrum regions of yak and cattle
Li-Ping ZHENG ; Xiao-Hua DU ; Ya-Juan WU ; Shan-Shan LIU ; Xia LIU
Acta Anatomica Sinica 2024;55(1):10-16
Objective To clarify the expression and distribution of brain⁃derived neurotrophic factor (BDNF) in the cerebrum of plateau yaks and cattle, and to explore the relationship between BDNF function and the adaptability of altitude hypoxia. Methods Five yaks and five cattles were selected.The content and distribution of BDNF in frontal lobe, temporal lobe, parietal lobe, occipital lobe, cerebrum white matter and hippocampus of yak and cattle were analyzed by Real⁃time PCR, Western blotting and Immunohistochemistry. Results Real⁃time PCR result showed that BDNF mRNA expression in the cerebrum of yaks and cattles was highest in temporal cortex, followed by hippocampus, parietal cortex, occipital cortex and frontal cortex, and lowest in white matter. Western blotting results showed that the content of BDNF protein in the cerebrum of yaks was the highest in temporal cortex,followed by hippocampus. The content of BDNF protein in other tissues was parietal cortex, frontal cortex and cerebrum white matter, and the content of BDNF protein was the lowest in occipital cortex. The content of BDNF protein intlecerebrum of cattles was the highest in the temporal cortex, followed by the hippocampus. The content of BDNF protein in other tissues was parietal cortex, occipital cortex and frontal cortex in descending order, and the protein content in cerebrum white matter was the lowest. Immunohistochemical results showed that the positive expression of BDNF protein in the cerebrum of yaks and cattles was basically similar, mainly distributed in the granulosa cells and glial cells in the frontal cortex, temporal cortex, parietal cortex and occipital cortex, glial cells in cerebrum white matter, pyramidal cell layer and polyform cell layer in the hippocampus. There was the small amount of distribution in Martinotti cells and the molecular layer of hippocampus in the cerebral cortex. Conclusion BDNF mRNA and protein are distributed and expressed in different brain regions of yaks and cattles, but the expression level different, which is speculated to be closely related to the specific functions of different cerebrum regions. The expression level of the cerebrum of yak is higher than that of cattle except occipital cortex, suggesting that it is related to the altitude hypoxic environment. BDNF may play an important role in enhancing hypoxic tolerance and protecting internal environmental homeostasis in the process of animal adaptation to hypoxic environment.
8.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
9.Study of The Y-STR Multiplex Microfluidic Chip Rapid Amplification System
Dao-Yu WANG ; Qun WAN ; Bin ZHUANG ; Li-Jian ZHAO ; Jun-Ping HAN ; Cai-Xia LI
Progress in Biochemistry and Biophysics 2024;51(3):696-705
ObjectiveAt present, the matching reagents of commercially available rapid DNA instruments based on microfluidics chip technology are autosome short tandem repeat (STR) individual identification reagents. The non-recombining part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profile is uninformative. Y-STR loci are useful markers to identify males and male lineages in forensic practice. In order to achieve rapid and fully integrated detection ofY-STR loci, this study constructed the RTyper Y27 microfluidic chip rapid detection system and validated the performance of this system. MethodsThe system was verified and evaluated by sensitivity, success rate, typing accuracy, peak height balance, sizing precision and accuracy, mock case sample tests, mixture detection ability, and inhibition tolerance. ResultsComplete Y-STR profiles can be obtained when the template amount of DNA standard 9948 was ≥8 ng, the number of blood cards was ≥3 pieces, and the number of oral swab scrapings was≥7 times. The success rate of fully integrated detection was 91.52%, and the concordance rates was 99.74% for 165 testing samples. The success rate of 115 blood spots in these samples was 90.43%, with a typing accuracy of 99.65%, the success rate of 50 buccal swabs was 94%, with a typing accuracy of 99.92%. There was no significant difference in typing accuracy between blood spots and buccal swab samples. The peak height ratio between different fluorescence channels was 89.81%. The standard deviation of allelic ladder for 10 runs was within 0.5 bp. The size differences between allele and corresponding allele in allelic ladder was within 0.5 bp. The maximum precision CV values within and between batches were 0.48% and 0.68%, respectively, which were lower than 15%. These data indicate that the system has good accuracy and precision. The system was capable of accurately typing oral swabs, blood cards, saliva cards, cigarette butts, blood swabs and seminal stains. Complete Y-STR profiles can be obtained and distinguish at the 1∶3 ratio of minor and major contributors in artificial male DNA mixtures. Complete Y-STR genotyping can be obtained under the interference of inhibitors, such as different concentrations of humic acid (50-400 mg/L), indigotin (20-100 nmol/L) and hemoglobin (100-500 μmol/L). ConclusionIn this study, the RTyper Y27 microfluidic chip rapid amplification system is combined with the Quick TargSeq 1.0 integrated system, and the Y-STR profile can be obtained in approximately 2 h. Through a series of verification experiments, the results show that the system has good repeatability, accuracy and stability, can meet the on-site Y-STR detection requirements, and can be used in forensic practice.
10.The Regulatory Function of ADAR1-mediated RNA Editing in Hematological Malignancies
Xing-Yu WAN ; Huan-Ping GUO ; Rui-Hao HUANG ; Xiao-Qi WANG ; Ling-Yu ZENG ; Tao WU ; Lin XIA ; Xi ZHANG
Progress in Biochemistry and Biophysics 2024;51(2):300-308
RNA editing, an essential post-transcriptional reaction occurring in double-stranded RNA (dsRNA), generates informational diversity in the transcriptome and proteome. In mammals, the main type of RNA editing is the conversion of adenosine to inosine (A-to-I), processed by adenosine deaminases acting on the RNAs (ADARs) family, and interpreted as guanosine during nucleotide base-pairing. It has been reported that millions of nucleotide sites in human transcriptome undergo A-to-I editing events, catalyzed by the primarily responsible enzyme, ADAR1. In hematological malignancies including myeloid/lymphocytic leukemia and multiple myeloma, dysregulation of ADAR1 directly impacts the A-to-I editing states occurring in coding regions, non-coding regions, and immature miRNA precursors. Subsequently, aberrant A-to-I editing states result in altered molecular events, such as protein-coding sequence changes, intron retention, alternative splicing, and miRNA biogenesis inhibition. As a vital factor of the generation and stemness maintenance in leukemia stem cells (LSCs), disordered RNA editing drives the chaos of molecular regulatory network and ultimately promotes the cell proliferation, apoptosis inhibition and drug resistance. At present, novel drugs designed to target RNA editing(e.g., rebecsinib) are under development and have achieved outstanding results in animal experiments. Compared with traditional antitumor drugs, epigenetic antitumor drugs are expected to overcome the shackle of drug resistance and recurrence in hematological malignancies, and provide new treatment options for patients. This review summarized the recent advances in the regulation mechanism of ADAR1-mediated RNA editing events in hematologic malignancies, and further discussed the medical potential and clinical application of ADAR1.

Result Analysis
Print
Save
E-mail