1.Polygonati Odorati Rhizoma Polysaccharides Ameliorate Hyperlipidemia in Mice by Regulating Gut Microbiota
Jingchen XIE ; Qianqian LIU ; Suhui XIONG ; Zhimin ZHANG ; Yuexin LIU ; Ping WU ; Duanfang LIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):84-92
ObjectiveTo explore the effect of Polygonati Odorati Rhizoma polysaccharides on hyperlipidemia in mice by modulating the gut microbiota. MethodsNinety male C57BL/6J mice were randomized into the following groups (n=15): control, model, simvastatin, low- (100 mg·kg-1), medium- (200 mg·kg-1), and high-dose (400 mg·kg-1) Polygonati Odorati Rhizoma polysaccharides groups. Other groups except the control group were fed with a high-fat diet for the modeling of hyperlipidemia, and drug interventions lasted for 12 weeks. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by an automatic biochemical analyzer. The pathological changes in the liver and epididymal fat were observed by hematoxylin-eosin staining, and lipid accumulation in the liver was assessed by oil red O staining. The gut microbiota was analyzed by 16S rRNA gene sequencing. ResultsCompared with the control group, the model group exhibited an increase in body weight (P<0.01), along with marked elevations in serum levels of TC, TG, and LDL-C (P<0.05,P<0.01). Furthermore, the model group showcased increase in the liver index and epididymal fat coefficient (P<0.05), increased liver fat accumulation, enlargement of adipocytes in the epididymal fat, decreases in both alpha and beta diversity of the gut microbiota, and an increase in the relative abundance of Allobaculum (P<0.01). Compared with the model group, Polygonati Odorati Rhizoma polysaccharides suppressed the increase in body weight (P<0.01), lowered the serum levels of TC, TG, and LDL-C (P<0.05,P<0.01), reduced the liver index and epididymal fat coefficient (P<0.05), alleviated liver fat accumulation, and decreased the size of adipocytes in the epididymal fat. Furthermore, it enhanced the alpha and beta diversity of the gut microbiota in mice, reduced the relative abundance of Allobaculum, Erysipelotrichaceae, and Clostridium (P<0.01), and increased the relative abundance of Akkermansia and Blautia (P<0.01). ConclusionPolygonati Odorati Rhizoma polysaccharides can ameliorate hyperlipidemia induced by a high-fat diet in mice by regulating the diversity and composition of the gut microbiota.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
4.Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule
Gelin WU ; Ruixin FAN ; Chuling LIANG ; Leng XING ; Yongjian XIE ; Ping GONG ; Peng ZHOU ; BO LI
Journal of China Pharmaceutical University 2025;56(2):166-175
The present study employed UPLC-MS/MS to analyze and identify compounds in the raw powder of Tongluo Shenggu capsules. An HPLC method for the determination of vitexin content was established. The analysis of this drug was performed on a 30 ℃ thermostatic Acquity UPLC® BEH C18 (2.1 mm×100 mm,1.7 μm) column, with the mobile phase comprising 0.2% formic acid-methanol flowing at 0.3 mL /min in a gradient elution manner. Mass spectrometry was detected by ESI sources in both positive and negative ion modes for qualitative identification of chemical constituents. 12 flavonoid and 3 stilbenes compounds in the raw powder of Tongluo Shenggu capsules were successfully identified. Additionally, an HPLC method for the determination of vitexin content was established using a XBridge C18 column (4.6 mm × 250 mm, 5 µm) with a mobile phase of 0.05% glacial acetic acid in methanol for gradient elution, at a column temperature of 30 °C, a flow rate of 1.0 mL/min, and an injection volume of 20 μL. The method demonstrated good linearity in the concentration range of 10 µg/mL to 40 µg/mL (R=1.000) with an average recovery rate of 96.7%. The establishment of these methods provides a scientific basis for the quality control and development of the raw powder of Tongluo Shenggu capsules.
5.Effects and mechanism of Tianma xiongling zhixuan tablet on autophagy of vascular endothelial cells
Sunan YONG ; Chi FANG ; Yuanxiong LONG ; Ping LI ; Xiaobing XIE
China Pharmacy 2025;36(14):1737-1742
OBJECTIVE To explore the effects of Tianma xiongling zhixuan tablet on autophagy in vascular endothelial cells of rats and its potential mechanism. METHODS The rat aortic endothelial cells (RAECs) were divided into normal group, model group, blank serum group, traditional Chinese medicine (TCM) medicated serum group, autophagy blocker group, autophagy agonist group, and TCM combined with autophagy agonist group. Except for normal group, other groups were given 10 μg/mL lipopolysaccharide for 24 hours to induce RAECs inflammation injury model. Blank serum group was treated with 10% blank serum; TCM medicated serum group received 10% medicated serum derived from Tianma xiongling zhixuan tablet; autophagy blocker group was treated with 20 μmol/L of PD98059; autophagy agonist group was administered 50 μmol/L Honokiol. Lastly, the TCM combined with autophagy agonist group was given both 10% medicated serum derived from Tianma xiongling zhixuan tablet and 50 μmol/L Honokiol. The morphological characteristics of RAECs in each group were observed. The cell viability of each group, the contents of endothelin-1 (ET-1) and nitric oxide (NO), mitochondrial reactive oxygen species, mitochondrial membrane potential, and the expression levels of PTEN-induced kinase 1 (PINK1), Parkin, ubiquitin-binding protein (p62), and microtubule-associated protein 1 light chain 3 (LC3) were detected. RESULTS Compared with model group, the levels of ET-1, mitochondrial reactive oxygen species, and the relative expressions of PINK1, Parkin, and LC3 proteins in the autophagy blocker group and TCM medicated serum group were decreased or down-regulated significantly (P<0.05 or P<0.01); the cell viability rate (only autophagy blocker group), NO level, mitochondrial membrane potential, and the E-mail:46164660@qq.com relative expression level of p62 protein were increased or up-regulated significantly (P<0.05 or P<0.01); the pathological damage of RAECs was significantly improved, the number of cells increased significantly, and the typical paving stone-like characteristics were restored. The levels of ET-1, mitochondrial reactive oxygen species, and the relative expression levels of Parkin and LC3 proteins in the autophagy agonist group were increased or up-regulated significantly (P<0.05 or P<0.01), while cell viability rate was decreased significantly (P<0.05), the damage of RAECs was aggravated. Compared with the autophagy agonist group, the cell viability rate and the relative expression level of p62 protein in TCM combined autophagy agonist group were increased or up-regulated significantly (P<0.05 or P<0.01), while the levels of ET-1, the relative expression levels of PINK1, Parkin, and LC3 proteins were down-regulated significantly (P< 0.01), the damage of RAECs was reversed to a certain extent. CONCLUSIONS Tianma xiongling zhixuan tablet protects vascular endothelial function by regulating mitochondrial autophagy, the mechanism of which may be associated with the regulation of PINK1/Parkin signaling pathway and the inhibition of mitochondrial autophagy.
6.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
7.Chaihu and Longgu Mulitang Regulates ERK/CREB Signaling Pathway to Ameliorate Hippocampal Nerve Injury in Mouse Model of Depression
Shiyu JI ; Li WANG ; Zhuo ZHANG ; Yingzhe GAO ; Zefeng ZHANG ; Siyu CHEN ; Guangjing XIE ; Ping WANG ; Panpan HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):1-9
ObjectiveTo investigate the effects of Chaihu and Longgu Mulitang (CLMT) on hippocampal neural damage in the mouse model of depression via the extracellular signal-regulated protein kinase (ERK)/cAMP-response element-binding protein (CREB) signaling pathway. MethodsSeventy-eight male C57BL/6 mice were randomly allocated into normal control, model, low/medium/high-dose (2.89, 5.78, and 11.56 g·kg-1, respectively) CLMT, and paroxetine (10 mg·kg-1) groups. A depression model was established by chronic unpredictable mild stress (CUMS) combined with social isolation. Behavioral tests were carried out to evaluate depressive-like behaviors. Hematoxylin-eosin staining and Nissl staining were performed to assess hippocampal morphology and neuronal damage. Immunofluorescence was employed to detect glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). Real-time PCR was employed to measure the mRNA levels of ERK and CREB. Western blot was employed to determine the expression of ERK/CREB pathway proteins and brain-derived neurotrophic factor (BDNF) in the hippocampal tissue. Molecular Operating Environment (MOE) software was used for molecular docking to evaluate the interactions between CLMT components and target proteins. ResultsCompared with the normal control group, the model group showed decreased sucrose preference (P0.01), increased tail-suspension immobility time (P0.01), decreased activity in the central region of the open field test (P0.01), and decreased activity in the middle and open-arm region of the elevated plus maze test (P0.01). The hippocampal area in the model group showed wrinkled cells and a reduction in the number of cells, neurons with reduced sizes and Nissl bodies, enhanced fluorescence intensity of GFAP and Iba1 (P0.01), and down-regulated expression of phosphorylated (p)-ERK, p-CREB, and BDNF (P0.05, P0.01) and mRNA levels of ERK and CREB (P0.01). Compared with the model group, the CLMT group showed increased body weight (P0.05, P0.01), restored cell morphology, with only a small number of ruptured cells, normal neuronal structure and morphology with obvious nuclei and abundant Nissl bodies, weakened fluorescence intensity of GFAP and Iba1 (P0.05, P0.01), up-regulated mRNA levels of ERK and CREB (P0.05, P0.01) and protein levels of phosphorylated (p)-ERK, p-CREB, and BDNF in the hippocampal tissue (P0.05, P0.01). The results of molecular docking indicated that nine active ingredients in CLMT had good binding affinity with ERK and CREB. ConclusionCLMT may ameliorate the hippocampal nerve injury in the mouse model of depression by regulating the ERK/CREB pathway.
8.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.
9.Elemene Antitumor Drugs Development Based on "Molecular Compatibility Theory" and Clinical Application: A Retrospective and Prospective Outlook.
Xiao-Ying JIANG ; Li-Ping SHI ; Jun-Long ZHU ; Ren-Ren BAI ; Tian XIE
Chinese journal of integrative medicine 2024;30(1):62-74
Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".
Humans
;
Retrospective Studies
;
Antineoplastic Agents/therapeutic use*
;
Neoplasms/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Sesquiterpenes/therapeutic use*
10.The biotin synthesis pathway in Mycobacteria tuberculosis is a new target for the development of anti-tuberculosis drugs
Acta Pharmaceutica Sinica 2024;59(3):503-510
italic>Mycobacterium tuberculosis, responsible for tuberculosis (TB), remains a major health problem worldwide and is one of the infectious diseases causing increased morbidity and mortality worldwide. Biotin, namely vitamin H, is an important cofactor necessary for fatty acid biosynthesis, gluconeogenesis and amino acid metabolism in organisms including

Result Analysis
Print
Save
E-mail