1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
4.Association Between Vitamin D Status and Insulin Resistance in Adolescents: A Cross-sectional Observational Study
Xiaoyuan GUO ; Yutong WANG ; Zhibo ZHOU ; Shi CHEN ; Mei ZHANG ; Bo BAN ; Ping LI ; Xinran ZHANG ; Qiuping ZHANG ; Kai YANG ; Hongbo YANG ; Hanze DU ; Hui PAN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):577-583
To investigate the correlation between vitamin D nutritional status and insulin resistance in pubertal adolescents. This cross-sectional observational study employed convenience sampling to recruit 2021-grade(8th grade) students from Jining No.7 Middle School in Shandong Province on June 5, 2023. Data collection included questionnaires, physical examinations, and imaging assessments to obtain general information, secondary sexual characteristics development, and bone age. Venous blood samples were collected to measure fasting blood glucose(FBG), fasting insulin(FINS), homeostasis model assessment of insulin resistance(HOMA-IR), and 25-hydroxyvitamin D[25(OH)D] levels. Spearman correlation analysis and multivariate linear regression models were used to examine the associations between serum vitamin D levels and FBG, FINS, and HOMA-IR. The study included 168 pubertal adolescents[69 females(41.1%), 99 males(58.9%); mean age(13.27±0.46) years]. All participants had entered puberty based on sexual development assessment. Vitamin D deficiency was observed in 41 participants(24.4%), insufficiency in 109(64.9%), and sufficiency in 18(10.7%). The median HOMA-IR was 3.49(2.57, 5.14).Significant differences were found across vitamin D status groups for HOMA-IR [4.45(2.54, 6.62) Vitamin D deficiency/insufficiency is prevalent among pubertal adolescents, and serum vitamin D levels show a significant inverse association with insulin resistance. These findings suggest the potential importance of vitamin D status in metabolic health during puberty.
5.Body Composition Profiles and Associated Factors in Adolescents UndergoingLong-term Regular Exercise
Yutong WANG ; Xiaoyuan GUO ; Hanze DU ; Hui PAN ; Wei WANG ; Mei ZHANG ; Bo BAN ; Ping LI ; Xinran ZHANG ; Qiuping ZHANG ; Hongshuang SUN ; Rong LI ; Shi CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):591-597
To investigate body composition and associated factors in adolescents undergoing long-term regular sports training. This prospective longitudinal cohort study employed convenience sampling to recruit adolescents receiving structured athletic training at Jining Sports Training Center in June 2023. Baseline measurements included height, weight, body mass index (BMI), blood pressure, heart rate, waist circumference, and hip circumference. Questionnaires assessed sleep duration, screen time, and household income. Follow-up measurements in June 2024 repeated these assessments while adding bioelectrical impedance analysis for body composition (lean mass, skeletal muscle mass, fat mass, and body fat percentage). Linear regression models examined associations between training type (direct-contact vs. non-contact sports) and follow-up body fat percentage, BMI, and waist circumference as dependent variables, adjusting for covariates. The study included 110 adolescents (39 female, 71 male) with median age 13.21 years (IQR: 12.46-14.33). Participants comprised 65 direct-contact and 45 non-contact athletes. Baseline prevalence rates were 27.27% for overweight/obesity, 24.55% for elevated waist circumference, and 16.36% for elevated blood pressure. At follow-up, corresponding rates were 24.55%, 26.36%, and 13.64% respectively. The elevated blood pressure subgroup showed significantly higher waist circumference ( Despite regular athletic training, substantial proportions of adolescents exhibited overweight/obesity, abdominal obesity, and elevated blood pressure, warranting clinical attention. Training modality appears to influence body composition changes, with direct-contact sports associated with more favorable adiposity-related outcomes.
6.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
7.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
8.Pathogens of first-episode pulmonary infection in 141 children with chronic granulomatous disease.
Hui LIU ; Shunying ZHAO ; Haiming YANG ; Jinrong LIU ; Hui XU ; Xiaolei TANG ; Yuelin SHEN ; Xiaoyan ZHANG ; Xiaohui WEN ; Yuhong ZHAO ; Ping CHU ; Huimin LI
Chinese Medical Journal 2024;137(4):502-504
9.Effect of type of carrier material on the in vitro properties of solid dispersions of progesterone
Jing-nan QUAN ; Yi CHENG ; Jing-yu ZHOU ; Meng LI ; Zeng-ming WANG ; Nan LIU ; Zi-ming ZHAO ; Hui ZHANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(3):735-742
This study investigated the effect of different carrier materials on the
10.Research progress of needle-free injection technology
He ZHANG ; Shuo LI ; Yi CHENG ; Zeng-ming WANG ; Nan LIU ; Meng LI ; Hui ZHANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(3):591-599
Needle-free injection technology (NFIT) refers to the drug delivery systems in which drugs are propelled as high-speed jet streams using any of the pressure source to penetrate the skin to the required depth. NFIT is a promising drug delivery system as it enables the injection of liquids, powders, and depot/projectiles, and has the advantages of preventing needle stick accidents, improving drug bioavailability, eliminating needle-phobia, increasing vaccine immunity, simplifying operations and is convenient for patients to use. NFIT and its research background, the structure and classification of needle-free jet injectors (NFJI), drugs that can be delivered using NFJI and the factors affecting the injection effect are comprehensively reviewed in this paper. The limitations and potential development directions are summarized to provide a theoretical basis for the application and development of NFIT.

Result Analysis
Print
Save
E-mail