1.Identification of Hypoxia-specific Transcripts in Liver Cancer Cells via Nanopore Long-read Sequencing
Li GAO ; Shengqi SHEN ; Ping GAO
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):88-97
ObjectiveLeveraging the advanced capabilities of nanopore long-read sequencing technology, our study undertook a comprehensive analysis of the distinct transcriptomic alterations occurring in normal liver parenchymal cells and liver cancer cells subjected to hypoxic conditions. The primary goal was to elucidate the underlying mechanisms governing tumor cell survival and metastasis in low-oxygen environments, thereby paving the way for innovative targeted cancer therapies. MethodsThe normal liver parenchymal cell line THLE-3 and the hepatocellular carcinoma cell line Hep3B were chosen as the focal points of this investigation. Following a 48-hour incubation period in both normoxic and hypoxic conditions, total RNA was extracted from these cells. Subsequently, we employed nanopore sequencing technology to conduct a high-throughput, high-fidelity analysis of the transcriptomes of these two cell lines across different oxygen levels. ResultsThis study established a hypoxic transcriptome dataset using third-generation nanopore sequencing technology, achieving an unprecedented level of sequencing accuracy. By conducting a Gene Ontology (GO) enrichment analysis, we systematically identified and explored the key biological pathways associated with the hypoxic response (P<0.05). Furthermore, we integrated molecular dynamics simulation techniques to gain deeper insights into the dynamic structural changes of Solute Carrier Family 1 Member 5 (SLC1A5) during the translation of hypoxic-specific subtypes, providing direct evidence to elucidate its functional regulation. ConclusionThe application of nanopore long-read sequencing technology has proven to be a powerful tool, not only successfully capturing the distinctive expression patterns and specific subtypes of mRNA under hypoxic conditions, but also offering robust technical support for delving into the intricate transcriptomic landscape of hypoxic microenvironments. By further integrating protein structure simulations and molecular dynamics, we have proposed novel avenues for exploring protein structures in hypoxic microenvironments. The findings of this study have significantly enriched the field of hypoxic-specific transcriptomics, providing a more reliable data foundation for investigating hypoxic-specific protein structures. Moreover, these discoveries have unveiled potential hypoxic-specific targets that could be harnessed for the development of future targeted cancer treatment strategies.
2.Mechanotransduction proteins in intervertebral disc degeneration
Xilin GAO ; Si WU ; Chao ZHANG ; Liguo ZHU ; Bifeng FU ; Ping WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):579-589
BACKGROUND:Recent research indicates that disc degeneration is closely related to abnormal stress load,and mechanotransduction proteins play a key role in it. OBJECTIVE:To investigate the role and mechanism of mechanotransduction proteins in the mechanotransduction process induced by abnormal mechanical stimulation in disc degeneration,and to summarize the current treatment strategies targeting mechanotransduction to delay intervertebral disc degeneration. METHODS:Using"intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanics,signal transduction,protein,biomechanics"as Chinese search terms,and"intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanical stimulation,signal transduction,protein,biomechanics"as English search terms,relevant literature in the PubMed and CNKI databases was searched.A total of 88 articles were ultimately included for review. RESULTS AND CONCLUSION:Disc cells can sense external mechanical stimulation through various mechanotransduction proteins and convert it into biological responses within the cells.These transduction proteins mainly include collagen proteins in the extracellular matrix,cell membrane surface receptors(such as integrins and ion channels),and cytoskeleton structural proteins.Their regulation of mechanotransduction processes primarily involves the activation of multiple pathways,such as the PI3K/AKT signaling pathway,nuclear factor-kB signaling pathway,and Ca2+/Calpain2/Caspase3 pathway.Mechanotransduction proteins play a key role in the mechanotransduction of disc cells.Abnormal expression of these proteins or resulting changes in the extracellular matrix environment can disrupt the mechanical balance of disc cells,leading to disc degeneration.In-depth study of the expression and regulatory mechanisms of mechanotransduction proteins in disc cells,and identification of key pathological links and therapeutic targets,is of significant importance for developing treatment strategies for disc degeneration.Current strategies to delay intervertebral disc degeneration by targeting mechanotransduction mainly include regulation of transduction proteins and improvement of the extracellular matrix.However,research in this area is still in its early stages.As research continues,new breakthroughs are expected in the regulation of disc degeneration by mechanotransduction proteins.
3.Analysis of phacoemulsification parameters and anterior segment parameters in cataract patients with different blood glucose levels
Xinqi XU ; Ping WANG ; Tong LIU ; Lei WANG ; Xuansheng ZHU ; Huiwen ZHANG ; Lei SHI ; Wen GAO
International Eye Science 2025;25(6):875-885
AIM:To analyze the characteristics and correlation of phacoemulsification parameters and anterior segment parameters in cataract patients with different blood glucose levels.METHODS:A total of 45 type 2 diabetic cataract patients(45 eyes)treated in our hospital from March 2023 to April 2024 were stratified into two groups based on glycosylated hemoglobin(HbA1c)levels: group A: HbA1c <7%(n=18)and group B: 7%≤HbA1c<8.5%(n=27); a total of 94 age-matched age-related cataract patients(94 eyes)were enrolled as the control group(group C). All underwent phacoemulsification with intraocular lens implantation. Anterior segment parameters, including corneal, lens and anterior chamber measurements, were recorded. Correlations between phacoemulsification parameters and anterior segment parameters were analyzed, and differences among groups were compared.RESULTS: In groups A and B, effective phacoemulsification time(EPT)negatively correlated with corneal endothelial cell density(CECD)(r=-0.315, P=0.035). Average phacoemulsification time(APT)positively correlated with the anterior corneal surface radius of curvature(Rm; r=0.402, P=0.006)and negatively correlated with the flat axis meridian curvature(K1), steep axis meridian curvature(K2), mean curvature(Km)of the anterior corneal surface, and lens density at 6 mm zones(PDZ3; all P<0.05). Average phacoemulsification energy(AVE)positively correlated with mean lens density(LD-mean), lens density at 2 mm zones(PDZ1), lens density at 4 mm zones(PDZ2), and PDZ3(all P<0.05), and negatively with pupil diameter(r=-0.385, P=0.009). In the group C, EPT showed a positive correlation with Pentacam nucleus staging(PNS)density grade, PDZ1, PDZ2, and PDZ3(all P<0.05). A positive correlation was observed between AVE and PNS classification(r=0.246, P=0.018). Conversely, AVE exhibited a negative correlation with CECD(r=-0.245, P=0.018). EPT in groups A and B was higher than that in the group C(P<0.05). Both EPT and APT in the group B were higher than those in the group A(P<0.05). In diabetic cataract patients, CECD, corneal density(CD), and posterior corneal surface height positively correlated with diabetes duration(P<0.05). Posterior corneal surface K1 and Rm positively correlated with 7%≤HbA1c<8.5%(P<0.05). Total corneal astigmatism negatively correlated with HbA1c, 2-hour post-breakfast blood glucose(2hPBG), and fasting insulin(FINS; P<0.05). CD and lens thickness(LT)positively correlated with FINS(P<0.05).CONCLUSION: Phacoemulsification parameters and blood glucose-related indices exhibited varying degrees of correlation with anterior segment parameters in cataract patients with different blood glucose levels. EPT in diabetic cataract patients was higher than that in age-related cataract patients, while EPT and APT in diabetic cataract patients with poor glycemic control were higher than those with good glycemic control.
4.Association of sleep quality with overweight and obesity among middle school students
Chinese Journal of School Health 2025;46(6):779-782
Objective:
To explore relationship of sleep quality with overweight and obesity among middle school students, so as to provide a reference basis for improving adolescent sleep health.
Methods:
From September to December 2023, 5 713 middle school students aged 13 to 18 were selected by stratified cluster random sampling method in six regions, including Shanghai, Suzhou, Taiyuan, Wuyuan, Xingyi and Urumqi. Sleep quality survey was conducted on middle school students by Pittsburgh Sleep Quality Index. Height and weight were measured, and World Health Organization s standards for growth and development of children and adolescents was used to evaluate their nutritional status. Both χ 2 test and Logistic regression analysis were used to analyze the association between sleep quality and nutritional status of middle school students.
Results:
The non compliance detection rate of sleep quality was 38.4% among girls, but 29.2% among boys, and the difference was of statistical significance( χ 2=54.08, P < 0.01 ). The detection rate of substandard sleep quality was 34.2% in the group with normal nutritional status, 38.3% in the group with overweight, 43.7% in the group with obesity and 26.0% in the group with emaciation, and the difference in the rates of substandard sleep quality among middle school students of different nutritional status was statistically significant ( χ 2=68.15, P <0.01). Logistic regression analysis showed that, after controlling for mental health and physical activity, the detection rate of substandard sleep quality in the obese groups was 1.30 times higher than that in the normal group, respectively( OR =1.30, 95% CI =1.06- 1.59 , P <0.01).
Conclusions
Sleep quality is correlated with overweight and obesity among middle school students, and there are gender differences. Intervention policies should be formulated according to the characteristics of different genders.
5.Prenatal depression in primiparous women: effects of social support, fear of childbirth and related factors
Ping GAO ; Shan LIU ; Lin FENG ; Chengyan QIU ; Feng JIAN ; Ru GAO
Sichuan Mental Health 2025;38(4):315-320
BackgroundPrenatal depression has an important impact on maternal health and pregnancy outcomes. Previous studies have shown that maternal prenatal depression is associated with social support, and social support is related to fear of childbirth. However, there is limited research on the relationship among maternal prenatal depression, social support and fear of childbirth, and no studies have specifically explored the influence of social support and fear of childbirth on prenatal depression in primiparous women. ObjectiveTo investigate the current status of prenatal depression among primiparous women, and to analyze the correlation between social support and fear of childbirth, and to further explore the influence of social support and fear of childbirth on prenatal depression in this population, so as to provide references for improving their mental health. MethodsA total of 380 primiparous women admitted to the inpatient department of Chengdu Wenjiang District People's Hospital from December 2022 to September 2023 were enrolled as study subjects. A self-made questionnaire, Edinburgh Postnatal Depression Scale (EPDS), Social Support Rating Scale (SSRS) and Childbirth Attitudes Questionnaire (CAQ) were used to conduct the survey. Pearson correlation analysis was employed to examine the relationships between scale scores. Multiple linear regression analysis was conducted to identify influencing factors of prenatal depression. ResultsA total of 380 questionnaires were distributed, with 372 (97.89%) valid responses collected. Among the participants, 222 cases (59.68%) were identified with prenatal depression. Pearson correlation analysis revealed that EPDS score was negatively correlated with SSRS score (r=-0.283, P<0.01) and positively correlated with CAQ score (r=0.341, P<0.01). Multiple linear regression analysis indicated that social support (β=-0.166, P<0.01) and fear of childbirth (β=0.269, P<0.01) were influencing factors of prenatal depression in primiparous women. ConclusionThe prevalence of prenatal depression among primiparous women is concerning, with depression levels showing significant associations with both social support and fear of childbirth.
6.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
7.Current disease burden of cellulitis
Minglu GAO ; Jingwen HE ; Chenyue QIU ; Zhihang MIAO ; Lijing ZHU ; Qiong WU ; Ping FENG ; Guangyi WANG ; Guosheng WU
Journal of Public Health and Preventive Medicine 2025;36(5):13-17
Objective To analyze the trend of global cellulitis disease burden from 1990 to 2019, and to provide a theoretical basis for the prevention and control of cellulitis disease. Methods The Global Burden of Disease 2021 (GBD2021) data were collected, and data on the incidence, mortality, and disability-adjusted life year (DALY) of cellulitis were analyzed for each country worldwide. The estimated annual percentage change (EAPC) and age-standardized rate (ASR) were used to estimate the trend change of cellulitis from 1990 to 2021. Results The global burden of cellulitis increased significantly in 2021, with 55.96 million cases, 28.9 million deaths and 876.1 million DALYs, respectively. Incidence and mortality rates were generally higher in males than in females. The incidence and DALYs were higher in high SDI regions, with the highest burden observed in South Asia. In contrast, East Asia exhibited the lowest burden and demonstrated a declining trend. There were significant differences between countries, with India having the highest prevalence, the United States having the highest incidence, and Bahrain having the fastest growing rate.In 2021, China had the lowest age-standardised incidence of cellulitis in the world and the fastest declining age-standardised incidence and age-standardised DALYs. Conclusion The global disease burden of cellulitis is increasing from 1990-2021, and cellulitis remains an an important global public health problem. Targeted preventive meausres should be taken in areas with different economical levels. Men, middle-aged and elderly people, and newborns are the key groups in need of attention and health education.
8.Current disease burden of cellulitis
Minglu GAO ; Jingwen HE ; Chenyue QIU ; Zhihang MIAO ; Lijing ZHU ; Qiong WU ; Ping FENG ; Guangyi WANG ; Guosheng WU
Journal of Public Health and Preventive Medicine 2025;36(5):13-17
Objective To analyze the trend of global cellulitis disease burden from 1990 to 2019, and to provide a theoretical basis for the prevention and control of cellulitis disease. Methods The Global Burden of Disease 2021 (GBD2021) data were collected, and data on the incidence, mortality, and disability-adjusted life year (DALY) of cellulitis were analyzed for each country worldwide. The estimated annual percentage change (EAPC) and age-standardized rate (ASR) were used to estimate the trend change of cellulitis from 1990 to 2021. Results The global burden of cellulitis increased significantly in 2021, with 55.96 million cases, 28.9 million deaths and 876.1 million DALYs, respectively. Incidence and mortality rates were generally higher in males than in females. The incidence and DALYs were higher in high SDI regions, with the highest burden observed in South Asia. In contrast, East Asia exhibited the lowest burden and demonstrated a declining trend. There were significant differences between countries, with India having the highest prevalence, the United States having the highest incidence, and Bahrain having the fastest growing rate.In 2021, China had the lowest age-standardised incidence of cellulitis in the world and the fastest declining age-standardised incidence and age-standardised DALYs. Conclusion The global disease burden of cellulitis is increasing from 1990-2021, and cellulitis remains an an important global public health problem. Targeted preventive meausres should be taken in areas with different economical levels. Men, middle-aged and elderly people, and newborns are the key groups in need of attention and health education.
9.Application of a digital chylous plasma assessment device in the determination of chylous plasma
Lingyue GUO ; Caina LI ; Hongyan GAO ; Wei WEI ; Ping ZHANG ; Yan LIU ; Yajie WANG ; Weidong HE
Chinese Journal of Blood Transfusion 2025;38(9):1236-1241
Objective: To develop a simple digital chylous plasma device and validate its ability to accurately, standardly, and non-destructively determine chylous plasma in blood banks and clinical transfusions in hospitals. Methods: A digital chylous plasma assessment device was designed and manufactured. This device was used to measure the chylous degrees of chylous plasma samples before freezing, after freeze-thawing, before viral inactivation, and after viral inactivation. The measured chylosity index values were categorized according to the requirements specified in Appendix A of the Chinese national standard GB 18469-2001 "Quality Requirements for Whole Blood and Blood Components". This process established a digital standard for chylous plasma, enabling the identification of severe, moderate and mild chylous plasma, and non-chylous plasma. Results: The initial simple product of the digital chylous assessment device was successfully designed and manufactured. There was no significant difference in the degree of chylous plasma between pre-freezing 468.11±217.73 lux and post-thawing 538.91±273.39 lux of chylous plasma (P>0.05), or between pre-viral inactivation 858.33±387.79 lux and post-viral inactivation 928.33±166.51 lux of chylous plasma (P>0.05). The median of chylous degree values for plasma chylous index grades 0 to 6 were 45 lux, 250 lux, 620 lux, 835 lux, 1 130 lux, 1 390 lux, and 1 700 lux, respectively. The defined cutoff values/ranges for the chylous degree values corresponding to plasma chylous index grade 0 to 6 were ≤125 lux, 126-465 lux, 466-740 lux, 741-1 000 lux, 1 001-1 233 lux, 1 234-1 560 lux, and ≥1 561 lux. Conclusion: This study successfully developed the initial product of the digital chylous device and established digital standards for classifying chylous plasma. The device demonstrates the potential to meet the needs for assessment of chylous plasma in both blood banks and clinical transfusions in hospitals, thereby promoting the development and application of standardized, non-destructive chylous plasma assessment technology.
10.Chaihu and Longgu Mulitang Regulates ERK/CREB Signaling Pathway to Ameliorate Hippocampal Nerve Injury in Mouse Model of Depression
Shiyu JI ; Li WANG ; Zhuo ZHANG ; Yingzhe GAO ; Zefeng ZHANG ; Siyu CHEN ; Guangjing XIE ; Ping WANG ; Panpan HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):1-9
ObjectiveTo investigate the effects of Chaihu and Longgu Mulitang (CLMT) on hippocampal neural damage in the mouse model of depression via the extracellular signal-regulated protein kinase (ERK)/cAMP-response element-binding protein (CREB) signaling pathway. MethodsSeventy-eight male C57BL/6 mice were randomly allocated into normal control, model, low/medium/high-dose (2.89, 5.78, and 11.56 g·kg-1, respectively) CLMT, and paroxetine (10 mg·kg-1) groups. A depression model was established by chronic unpredictable mild stress (CUMS) combined with social isolation. Behavioral tests were carried out to evaluate depressive-like behaviors. Hematoxylin-eosin staining and Nissl staining were performed to assess hippocampal morphology and neuronal damage. Immunofluorescence was employed to detect glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). Real-time PCR was employed to measure the mRNA levels of ERK and CREB. Western blot was employed to determine the expression of ERK/CREB pathway proteins and brain-derived neurotrophic factor (BDNF) in the hippocampal tissue. Molecular Operating Environment (MOE) software was used for molecular docking to evaluate the interactions between CLMT components and target proteins. ResultsCompared with the normal control group, the model group showed decreased sucrose preference (P0.01), increased tail-suspension immobility time (P0.01), decreased activity in the central region of the open field test (P0.01), and decreased activity in the middle and open-arm region of the elevated plus maze test (P0.01). The hippocampal area in the model group showed wrinkled cells and a reduction in the number of cells, neurons with reduced sizes and Nissl bodies, enhanced fluorescence intensity of GFAP and Iba1 (P0.01), and down-regulated expression of phosphorylated (p)-ERK, p-CREB, and BDNF (P0.05, P0.01) and mRNA levels of ERK and CREB (P0.01). Compared with the model group, the CLMT group showed increased body weight (P0.05, P0.01), restored cell morphology, with only a small number of ruptured cells, normal neuronal structure and morphology with obvious nuclei and abundant Nissl bodies, weakened fluorescence intensity of GFAP and Iba1 (P0.05, P0.01), up-regulated mRNA levels of ERK and CREB (P0.05, P0.01) and protein levels of phosphorylated (p)-ERK, p-CREB, and BDNF in the hippocampal tissue (P0.05, P0.01). The results of molecular docking indicated that nine active ingredients in CLMT had good binding affinity with ERK and CREB. ConclusionCLMT may ameliorate the hippocampal nerve injury in the mouse model of depression by regulating the ERK/CREB pathway.


Result Analysis
Print
Save
E-mail