1.Comprehensive evaluation of Pinellia ternata germplasm resources based on phenotypic trait classification.
Li LIU ; Xue FENG ; Jia-Lu WANG ; Jia-Lei CHEN ; Meng-Meng HOU ; Xiang-Yu ZHANG ; Kai-Yang LI ; Xi-Wen LI ; Shi-Lin CHEN
China Journal of Chinese Materia Medica 2023;48(24):6613-6623
The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 μg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.
Plants, Medicinal
;
Pinellia/genetics*
;
Plant Breeding
;
Phenotype
;
Uridine
2.Effect of lime water processing of Pinelliae Rhizoma Praeparatum on toxic component lectin protein.
China Journal of Chinese Materia Medica 2023;48(4):951-957
The present study investigated the effect of immersion in the excipient lime water on the toxic component lectin protein and explained the scientific connotation of lime water detoxication during the processing of Pinelliae Rhizoma Praeparatum. Western blot was used to investigate the effects of immersion in lime water with different pH(pH 10, 11, and 12.4), saturated sodium hydroxide, and sodium bicarbonate solution on the content of lectin protein. The protein compositions of the supernatant and the precipitate after immersing lectin protein in lime water of different pH were determined by the SDS-PAGE method combined with the silver staining technique. The MALDI-TOF-MS/MS technique was used to detect the molecular weight distribution of peptide fragments in the supernatant and precipitate after immersing lectin protein in lime water of different pH, and circular dichroism spectroscopy was used to detect the ratio changes in the secondary structure of lectin protein during the immersion. The results showed that immersion in lime water at pH>12 and saturated sodium hydroxide solution could significantly reduce the content of lectin protein, while immersion in lime water at pH<12 and sodium bicarbonate solution had no significant effect on lectin protein content. The corresponding lectin protein bands and molecular ion peaks were not detected at the 12 kDa position in the supernatant and precipitate after immersing the lectin protein in lime water at pH>12, which was attributed to the fact that lime water immersion at pH>12 could significantly change the ratio of the secondary structure of lectin protein, resulting in irreversible denaturation, while lime water immersion at pH<12 did not change the ratio of the secondary structure of lectin protein. Therefore, pH>12 was the key condition for the detoxication of lime water during the processing of Pinelliae Rhizoma Praeparatum. Lime water immersion at pH>12 could cause irreversible denaturation of lectin protein, resulting in a significant decrease in the inflammatory toxicity of Pinelliae Rhizoma Praeparatum, which played a key role in detoxification.
Lectins
;
Pinellia
;
Sodium Bicarbonate
;
Sodium Hydroxide
;
Tandem Mass Spectrometry
;
Water
3.Physiological and transcriptional responses to heat stress in a typical phenotype of Pinellia ternata.
Jialu WANG ; Jialei CHEN ; Xiangyu ZHANG ; Xue FENG ; Xiwen LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):243-252
Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.
Pinellia/genetics*
;
Heat-Shock Response/genetics*
;
Photosynthesis/genetics*
;
Plants, Medicinal/genetics*
;
Phenotype
4.Identification, biological characteristics, and control of pathogen causing Pinellia ternata soft rot in Hubei province.
Fan-Fan WANG ; Tao TANG ; Ting MAO ; Yuan-Yuan DUAN ; Xiao-Liang GUO ; Guo-Bin FANG ; Hui KUANG ; Guang-Zhong SUN ; Jing-Mao YOU
China Journal of Chinese Materia Medica 2022;47(4):889-896
This study was designed to identify the pathogen causing soft rot of Pinellia ternata in Qianjiang of Hubei province and screen out the effective bactericides, so as to provide a theoretical basis for the control of soft rot of P. ternata. In this study, the pathogen was identified based on molecular biology and physiological biochemistry, followed by the detection of pathogenicity and pathogenicity spectrum via plant tissue inoculation in vitro and the indoor toxicity determination using the inhibition zone method to screen out bactericide with good antibacterial effects. The control effect of the bactericide against P. ternata soft rot was verified by the leave and tuber inoculation in vitro. The phylogenetic tree was constructed based on the 16 S rDNA, dnaX gene, and recA gene sequences, respectively, and the result showed that the pathogen belonged to the same branch as the type strain Dickeya fangzhongdai JS5. The physiological and biochemical tests showed that the pathogen was identical to D. fangzhongdai, which proved that the pathogen was D. fangzhongdai. The pathogenicity test indicated that the pathogen could obviously infect leaves at 24 h and tubers in 3 d. As revealed by the indoor toxicity test, 0.3% tetramycin, 5% allicin, and 80% ethylicin had good antibacterial activities, with EC_(50) values all less than 50 mg·L~(-1). Tests in tissues in vitro showed that 5% allicin exhibited the best control effect, followed by 0.3% tetramycin and 10% zhongshengmycin oligosaccharide, and their preventive effects were better than curative effects. Therefore, 5% allicin can be used as the preferred agent for the control of P. ternata soft rot, and 0.3% tetramycin and 10% zhongshengmycin oligosaccharide as the alternatives. This study has provided a certain theoretical basis for the control of P. ternata soft rot.
Phylogeny
;
Pinellia/chemistry*
;
Plant Leaves
;
Plant Tubers
5.Irritant toxicity and lectin content of different processed products of Pinelliae Rhizoma.
Yan-Qiu CHENG ; Hong-Li YU ; Hao WU ; Xing-Bao TAO ; Yu-Wei XIE ; Sheng-Jun CHEN ; Ping ZHANG ; Song LI ; Cai-Xia WANG ; He-Peng WANG ; Ping ZENG ; Bing-Bing LIU
China Journal of Chinese Materia Medica 2022;47(17):4627-4633
The present study aims to investigate the correlation between irritant toxicity variation and lectin content variation during the processing of Pinelliae Rhizoma products and to explore the feasibility of Western blot as a method for the detection of lectin. We processed Pinelliae Rhizoma Praeparatum Cum Alumine, Pinelliae Rhizoma Praeparatum, and Pinelliae Rhizoma Praeparatumcum Zingibere et Alumine to different degrees and then analyzed their irritant toxicity via Draize rabbit eye test. Western blot was employed to determine the lectin content in Pinelliae Rhizoma products processed with different methods. The correlation between toxicity variation and lectin content variation was then analyzed. Different decoction pieces of Pinelliae Rhizoma were collected for the determination of lectin content. The three processed products of Pinelliae Rhizoma showed gradually decreased toxicity and lectin content as the processing continued. The decreasing trend of lectin content was consistent with that of irritant toxicity during processing, which indicated that the change in lectin content could reflect the trend of irritant toxicity. No band of lectin appeared in the Western blot of processed products of Pinelliae Rhizoma, which suggested that western blotting can be used for the detection of toxic lectin in the processed products of Pinelliae Rhizoma. Lectin should not be detected in the Pinelliae Rhizoma products processed according to the methods in the Chinese Pharmacopoeia.
Animals
;
Drugs, Chinese Herbal/toxicity*
;
Irritants
;
Lectins
;
Pinellia
;
Rabbits
;
Technology, Pharmaceutical/methods*
6.Medication law and mechanism of traditional Chinese medicine in prevention and treatment of epidemic diseases: based on traditional Chinese medicine theory of cold pestilence.
Ze-Yu LI ; Er-Wei HAO ; Rui CAO ; Si LIN ; Shu-Ying CHEN ; Xian-Ting HUANG ; Wan-Ru XU ; Xiao-Tao HOU ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2022;47(17):4765-4777
Epidemic diseases have caused huge harm to the society. Traditional Chinese medicine(TCM) has made great contributions to the prevention and treatment of them. It is of great reference value for fighting diseases and developing drugs to explore the medication law and mechanism of TCM under TCM theory. In this study, the relationship between the TCM theory of cold pestilence and modern epidemic diseases was investigated. Particularly, the the relationship of coronavirus disease 2019(COVID-19), severe acute respiratory syndrome(SARS), and influenza A(H1 N1) with the cold pestilence was identified and analyzed. The roles of TCM theory of cold pestilence in preventing and treating modern epidemic diseases were discussed. Then, through data mining and textual research, prescriptions for the treatment of cold pestilence were collected from major databases and relevant ancient books, and their medication laws were examined through analysis of high-frequency medicinals and medicinal pairs, association rules analysis, and cluster analysis. For example, the prescriptions with high confidence levels were identified: "Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Paeoniae Radix Alba" "Glycyrrhizae Radix et Rhizoma-Pinelliae Rhizoma-Bupleuri Radix", and TCM treatment methods with them were analyzed by clustering analysis to yield the medicinal combinations: "Zingiberis Rhizoma-Aconiti Lateralis Radix Praeparata-Ginseng Radix et Rhizoma" "Poria-Atractylodis Macrocephalae Rhizoma" "Cinnamomi Ramulus-Asari Radix et Rhizoma" "Citri Reticulatae Pericarpium-Perillae Folium" "Pinelliae Rhizoma-Magnoliae Officinalis Cortex-Atractylodis Rhizoma" "Paeoniae Radix Alba-Angelicae Sinensis Radix-Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Scutellariae Radix-Rhizoma Zingiberis Recens" "Ephedrae Herba-Armeniacae Semen Amarum-Gypsum Fibrosum" "Chuanxiong Rhizoma-Notopterygii Rhizoma et Radix-Angelicae Dahuricae Radix-Platycodonis Radix-Saposhnikoviae Radix". Then, according to the medication law for cold pestilence, the antiviral active components of medium-frequency and high-frequency medicinals were retrieved. It was found that these components exerted the antiviral effect by inhibiting virus replication, regulating virus proteins and antiviral signals, and suppressing protease activity. Based on network pharmacology, the mechanisms of the medicinals against severe acute respiratory syndrome coronavirus(SARS-CoV), 2019 novel coronavirus(2019-nCoV), and H1 N1 virus were explored. It was determined that the key targets were tumor necrosis factor(TNF), endothelial growth factor A(VEGFA), serum creatinine(SRC), epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), mitogen-activated protein kinase 14(MAPK14), and prostaglandin-endoperoxide synthase 2(PTGS2), which were involved the mitogen-activated protein kinase(MAPK) pathway, advanced glycation end-products(AGE)-receptor for AGE(RAGE) pathway, COVID-19 pathway, and mTOR pathway. This paper elucidated the medication law and mechanism of TCM for the prevention and treatment of epidemic diseases under the guidance of TCM theory of cold pestilence, in order to build a bridge between the theory and modern epidemic diseases and provide reference TCM methods for the prevention and treatment of modern epidemic diseases and ideas for the application of data mining to TCM treatment of modern diseases.
Aconitum
;
Antiviral Agents
;
COVID-19/epidemiology*
;
Calcium Sulfate
;
Communicable Disease Control
;
Communicable Diseases/virology*
;
Creatinine
;
Cyclooxygenase 2
;
Drugs, Chinese Herbal/therapeutic use*
;
Endothelial Growth Factors
;
Epidemics/prevention & control*
;
ErbB Receptors
;
Humans
;
Matrix Metalloproteinase 9
;
Medicine, Chinese Traditional
;
Mitogen-Activated Protein Kinase 14
;
Pinellia
;
SARS-CoV-2
;
TOR Serine-Threonine Kinases
;
Tumor Necrosis Factors
;
COVID-19 Drug Treatment
7.Preparation of monoclonal antibodies against Pinellia ternata lectin protein and establishment of double-antibody sandwich ELISA.
Yu-Wei XIE ; Hong-Li YU ; Hao WU ; Xing-Bao TAO ; He-Peng WANG ; Yan-Qiu CHENG ; Cai-Xia WANG ; Ping ZENG ; Bing-Bing LIU ; Ping ZHANG ; Xiao-Bing CUI
China Journal of Chinese Materia Medica 2022;47(22):6076-6081
To determine the content of endogenous toxic substance Pinellia ternata lectin(PTL) protein in Pinelliae Rhizoma and the related processed products, this study prepared specific monoclonal antibodies against PTL by hybridoma cell technology, and established a quantitative double-antibody sandwich enzyme linked immunosorbent assay(ELISA) for PTL antigen. The detection conditions were 2.5 μg·mL~(-1) working concentration of the captured antibody and 1∶450 of the dilution multiple of detected antibody. The coating condition was staying overnight at 4 ℃. The blocking time and incubation times of antigen and detected antibody were all 90 minutes. The incubation time of horseradish peroxidase conjugated streptavidin-horseradish peroxidase(SA-HRP) was 15 minutes. The quantitative limit of the method for PTL antigen was 0.375 ng·mL~(-1). The linear range was 75.000-4 800.000 pg·mL~(-1), and R~2=0.997 1. The recovery rate was 90.0%-110.0%, and the variation coefficients of intra-test and inter-test precision were 2.0%-3.0% and 2.0%-8.5%.The content of PTL in three batches of Pinelliae Rhizoma and the related processed products was determined by the method, and the average content of PTL in Pinelliae Rhizoma was 35.42 mg·g~(-1). The average content of PTL in Pinelliae Rhizoma Praeparatum Cum Alumine, Pinelliae Rhizoma Praeparatum, and Pinelliae Rhizoma Praeparatum Cum Zingibere Et Alumine were 1.15 mg·g~(-1), 16.53 μg·g~(-1), and 122.63 ng·g~(-1), respectively, indicating that the content of PTL decreased significantly after processing. The quantitative double-antibody sandwich ELISA for PTL antigen established in this paper had good linearity, sensitive response, and high accuracy, which provided a simple and effective monitoring method for the detection of PTL content in the processing of Pinelliae Rhizoma.
Pinellia
;
Drugs, Chinese Herbal
;
Antibodies, Monoclonal
;
Enzyme-Linked Immunosorbent Assay
;
Horseradish Peroxidase
8.Identification, biological characteristics, and control of pathogen causing southern blight of Pinellia ternata.
Jia ZHOU ; Qiao-Huan CHEN ; Jia-Wei XU ; Hong CHEN ; Bi-Sheng HUANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2022;47(19):5209-5216
In summer in 2020, Pinellia ternata in many planting areas in Hubei suffered from serious southern blight, as manifested by the yellowing and wilted leaves and rotten tubers. This study aims to identify the pathogen, clarify the biological characteristics of the pathogen, and screen fungicides. To be specific, the pathogen was isolated, purified, and identified, and the pathogenicity was detected according to the Koch's postulates. Moreover, the biological characteristics of the pathogen were analyzed. Furthermore, PDA plates and seedlings were used to determine the most effective fungicides. The results showed that the mycelia of the pathogen were white and villous with silk luster, which produced a large number of white to black brown sclerotia. The pathogen was identified as Athelia rolfsii by morphological observation and molecular identification based on LSU and TEF gene sequences. The optimum growth conditions for A. rolfsii were 30 ℃ and pH 5-8, and the optimum conditions for the germination of sclerotia were 25 ℃ and pH 7-9. Bacillus subtilis, difenoconazole, and flusilazole were identified as effective fungicides with PDA, and their half maximal effective concentration(EC_(50)) was all less than 5 mg·L~(-1). The effective fungicides screened with the seedlings were hymexazol and difenoconazole. Based on the screening experiments, difenoconazole can be used as the main agent for the prevention and treatment of southern blight.
Pinellia/genetics*
;
Fungicides, Industrial/pharmacology*
;
Seedlings
;
Bacillus subtilis
;
Mycelium
9.Effect of different parts of Pinelliae Rhizoma Decoction against airway inflammation and analysis of effective components.
Fan XUE ; Hong-Li YU ; Rui LIU ; Hao WU ; Yuan-Bin ZHANG ; Dong-Fang LIU ; Ping ZHANG ; Sheng-Jun CHEN ; Song LI
China Journal of Chinese Materia Medica 2021;46(22):5912-5921
This study investigated the material basis and mechanism of Pinelliae Rhizoma Decoction in the treatment of airway inflammation. The cigarette smoke combined with lipopolysaccharide(LPS) was used to induce an airway inflammation model in mice. The expression levels of IL-6 and IL-8 in the bronchoalveolar lavage fluid(BALF) and the phosphorylation levels of p38 and IκB in the lungs of mice were taken as indexes to screen the effective extracts by system solvent extraction from Pinelliae Rhizoma Decoction(dichloromethane extract, ethyl acetate extract, n-butanol extract, etc.). Meanwhile, the human bronchial epithelial(16-HBE) cell model of cigarette smoke extract(CSE)-induced injury was established, and the mRNA expression levels of IL-6 and IL-8 and the phosphorylation levels of p38 and IκB proteins were also taken as indexes to evaluate the anti-inflammatory effect of different extracts of Pinelliae Rhizoma Decoction. The results showed that Pinelliae Rhizoma Decoction significantly antagonized airway inflammation in mice by down-regulating the expression levels of IL-6 and IL-8 in mice with airway inflammation and 16-HBE cells with CSE-induced injury and inhibiting the phosphorylation levels of p38 and IκB. The dichloromethane and ethyl acetate extracts of Pinelliae Rhizoma Decoction showed significant anti-inflammatory effects, while such effects of other extracts were not prominent. Furthermore, the database of Pinelliae Rhizoma composition was constructed, and the components in effective extracts were analyzed by HPLC-TOF-MS and Nano-LC-MS/MS. As revealed by the results, the compositions of the two effective extracts were similar with 36 common components. They were combined and then divided into Pinelliae Rhizoma alkaloids(PTAs) and Pinelliae Rhizoma non-alkaloids(PTNAs) by 732 cation-exchange resin. Further in vitro investigation confirmed the significant anti-inflammatory effect of PTNAs, while such effect of PTAs was not manifest. The MS analysis showed 172 peptides and 7 organic acids in PTNAs. The peptide content in PTNAs was 63.5% measured by quantitative analysis of BCA assay, and the organic acid content was 9.92% by potentiometric titration method. The findings of this study suggested that Pinelliae Rhizoma Decoction could antagonize airway inflammation in mice by inhibiting phosphorylation of p38 and IκB and blocking the activation of MAPK and NF-κB signaling pathways, and the effective components were related to the peptides and organic acids in PTNAs. The above results lay a foundation for the research on the mechanism and material basis of Pinelliae Rhizoma in antagonizing airway inflammation.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Inflammation/drug therapy*
;
Mice
;
NF-kappa B/genetics*
;
Pinellia/chemistry*
;
Respiratory Tract Diseases/drug therapy*
;
Rhizome
;
Tandem Mass Spectrometry
10.Construction and characterization of an infectious clone of Soybean mosaic virus isolate from Pinellia ternata.
Li ZHANG ; Defu WANG ; Yanni PEI ; Shen XIAN ; Yanbing NIU
Chinese Journal of Biotechnology 2020;36(5):949-958
Soybean mosaic virus (SMV), one of the major viral diseases of Pinellia ternata (Thunb.) Breit., has had a serious impact on its yield and quality. The construction of viral infectious clones is a powerful tool for reverse genetics research on viral gene function and interaction between virus and host. To clarify the molecular mechanism of SMV infection in Pinellia ternata, it is particularly important to construct the SMV full-length cDNA infectious clone. Therefore, the infectious clone of Soybean mosaic virus Shanxi Pinellia ternata isolate (SMV-SXBX) was constructed in this study by Gibson in vitro recombination system, and the healthy Pinellia ternata leaves were inoculated by Agrobacterium infiltration, further through mechanical passage and RT-PCR, confirming that the 3' end of the SMV-SXBX infectious clone had a stable infectivity when it contained 56-nt of poly(A) tail. This method is not only convenient and efficient, but also avoids the instability of SMV infectious clones in Escherichia coli. The construction of SMV full-length infectious cDNA clones laid the foundation for further study on the molecular mechanism of SMV replication and pathogenesis.
DNA, Complementary
;
Pinellia
;
virology
;
Plant Diseases
;
virology
;
Potyvirus
;
isolation & purification
;
metabolism

Result Analysis
Print
Save
E-mail