1.Sterol transport proteins in yeast: a review.
Yu WANG ; Tao WU ; Xuqian FAN ; Haihua RUAN ; Feiyu FAN ; Xueli ZHANG
Chinese Journal of Biotechnology 2023;39(8):3204-3218
Sterols are a class of cyclopentano-perhydrophenanthrene derivatives widely present in living organisms. Sterols are important components of cell membranes. In addition, they also have important physiological and pharmacological activities. With the development of synthetic biology and metabolic engineering technology, yeast cells are increasingly used for the heterologous synthesis of sterols in recent years. Nevertheless, since sterols are hydrophobic macromolecules, they tend to accumulate in the membrane fraction of yeast cells and consequently trigger cytotoxicity, which hampers the further improvement of sterols yield. Therefore, revealing the mechanism of sterol transport in yeast, especially understanding the working principle of sterol transporters, is vital for designing strategies to relieve the toxicity of sterol accumulation and increasing sterol yield in yeast cell factories. In yeast, sterols are mainly transported through protein-mediated non-vesicular transport mechanisms. This review summarizes five types of sterol transport-related proteins that have been reported in yeast, namely OSBP/ORPs family proteins, LAM family proteins, ABC transport family proteins, CAP superfamily proteins, and NPC-like sterol transport proteins. These transporters play important roles in intracellular sterol gradient distribution and homeostasis maintenance. In addition, we also review the current status of practical applications of sterol transport proteins in yeast cell factories.
Saccharomyces cerevisiae/genetics*
;
Sterols
;
Phytosterols
;
Biological Transport
;
ATP-Binding Cassette Transporters/genetics*
2.Biosynthesis of steroidal intermediates using Mycobacteria: a review.
Shikui SONG ; Jianxin HE ; Yongqi HUANG ; Zhengding SU
Chinese Journal of Biotechnology 2023;39(3):1056-1069
Steroids are a class of medicines with important physiological and pharmacological effects. In pharmaceutical industry, steroidal intermediates are mainly prepared through Mycobacteria transformation, and then modified chemically or enzymatically into advanced steroidal compounds. Compared with the "diosgenin-dienolone" route, Mycobacteria transformation has the advantages of abundant raw materials, cost-effective, short reaction route, high yield and environmental friendliness. Based on genomics and metabolomics, the key enzymes in the phytosterol degradation pathway of Mycobacteria and their catalytic mechanisms are further revealed, which makes it possible for Mycobacteria to be used as chassis cells. This review summarizes the progress in the discovery of steroid-converting enzymes from different species, the modification of Mycobacteria genes and the overexpression of heterologous genes, and the optimization and modification of Mycobacteria as chassis cells.
Mycobacterium/metabolism*
;
Steroids/metabolism*
;
Phytosterols/metabolism*
;
Genomics
3.Physiological and biochemical mechanisms of brassinosteroid in improving anti-cadmium stress ability of Panax notoginseng.
Gao-Yu LIAO ; Zheng-Qiang JIN ; Lan-Ping GUO ; Ya-Meng LIN ; Zi-Xiu ZHENG ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(6):1483-1490
In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.
Cadmium/metabolism*
;
Antioxidants/pharmacology*
;
Panax notoginseng
;
Brassinosteroids/pharmacology*
;
Chlorophyll/metabolism*
;
Plant Roots/metabolism*
;
Stress, Physiological
4.Stigmasterol protects human brain microvessel endothelial cells against ischemia-reperfusion injury through suppressing EPHA2 phosphorylation.
Suping LI ; Fei XU ; Liang YU ; Qian YU ; Nengwei YU ; Jing FU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):127-135
Stigmasterol is a plant sterol with anti-apoptotic, anti-oxidative and anti-inflammatory effect through multiple mechanisms. In this study, we further assessed whether it exerts protective effect on human brain microvessel endothelial cells (HBMECs) against ischemia-reperfusion injury and explored the underlying mechanisms. HBMECs were used to establish an in vitro oxygen and glucose deprivation/reperfusion (OGD/R) model, while a middle cerebral artery occlusion (MCAO) model of rats were constructed. The interaction between stigmasterol and EPHA2 was detected by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA). The results showed that 10 μmol·L-1 stigmasterol significantly protected cell viability, alleviated the loss of tight junction proteins and attenuated the blood-brain barrier (BBB) damage induced by OGD/R in thein vitro model. Subsequent molecular docking showed that stigmasterol might interact with EPHA2 at multiple sites, including T692, a critical gatekeep residue of this receptor. Exogenous ephrin-A1 (an EPHA2 ligand) exacerbated OGD/R-induced EPHA2 phosphorylation at S897, facilitated ZO-1/claudin-5 loss, and promoted BBB leakage in vitro, which were significantly attenuated after stigmasterol treatment. The rat MCAO model confirmed these protective effects in vivo. In summary, these findings suggest that stigmasterol protects HBMECs against ischemia-reperfusion injury by maintaining cell viability, reducing the loss of tight junction proteins, and attenuating the BBB damage. These protective effects are at least meditated by its interaction with EPHA2 and inhibitory effect on EPHA2 phosphorylation.
Humans
;
Animals
;
Rats
;
Stigmasterol
;
Phosphorylation
;
Endothelial Cells
;
Molecular Docking Simulation
;
Reperfusion Injury
;
Blood-Brain Barrier
;
Glucose
;
Microvessels
;
Oxygen
6.Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids: a review.
Liming WANG ; Ruizhen YANG ; Jiaqiang SUN
Chinese Journal of Biotechnology 2022;38(1):34-49
Plant adaptation to adverse environment depends on transmitting the external stress signals into internal signaling pathways, and thus forming a variety of stress response mechanisms during evolution. Brassinosteroids (BRs) is a steroid hormone and widely involved in plant growth, development and stress response. BR is perceived by cell surface receptors, including the receptor brassinosteroid-insensitive 1 (BRI1) and the co-receptor BRI1-associated-kinase 1 (BAK1), which in turn trigger a signaling cascade that leads to the inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Studies in the model plant Arabidopsis thaliana have shown that members of BR biosynthesis and signal transduction pathways, particularly protein kinase BIN2 and its downstream transcription factors BES1/BZR1, can be extensively regulated by a variety of environmental factors. In this paper, we summarize recent progresses on how BR biosynthesis and signal transduction are regulated by complex environmental factors, as well as how BR and environmental factors co-regulate crop agronomic traits, cold and salt stress responses.
Arabidopsis/metabolism*
;
Brassinosteroids/pharmacology*
;
DNA-Binding Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Stress, Physiological
7.Reinforcement of sterols production through directed storage and transportation in yeast: a review.
Xia KE ; Yi SHEN ; Lisha CAO ; Bo ZHANG ; Zhiqiang LIU
Chinese Journal of Biotechnology 2021;37(11):3975-3987
Sterols, a class of cyclopentane poly-hydrophenanthrene derivatives, are the predominant membrane constituent of eukaryotes. These substances have a variety of biological activities and have been widely used in food and pharmaceutical industries. The presence of endogenous ergosterol biosynthetic pathway in Saccharomyces cerevisiae cells make it an ideal chassis for the de novo synthesis of sterol and its derivatives. Most recently, the rational modification of organelles provides a novel strategy for the directed transportation and storage of target products and the ultimate enhanced product synthesis. This review summarizes the phenotypic responses of S. cerevisiae cells upon different physiological stimulations and the underlying molecular mechanisms. Reinforcement of sterol production through directed storage, transportation, and excretion of sterols offers a novel strategy for breaking the limitation of de novo biosynthesis of sterols in yeast.
Ergosterol
;
Phytosterols
;
Saccharomyces cerevisiae
;
Sterols
8.Withania somnifera: a kind of food-medicine plant popular in world in recent years.
Yue WANG ; Kai-Lin YANG ; Chun-Nian HE ; Pei-Gen XIAO
China Journal of Chinese Materia Medica 2021;46(20):5159-5165
Withania somnifera, also known as Indian ginseng, is an important traditional medicine in the Ayurvedic medical system of India, which has a significant effect of adaptation. Modern studies have shown that the main chemical components of W. somnifera are withanolides, which have antioxidant, anti-tumor, enhancing immunity, cardiovascular protection, neuroprotection, anti-stress, anti-stress reaction and hypoglycemic activities. Studies on human, animal, mutagenesis, genotoxicity, reproductive toxicity and drug interaction showed that W. somnifera had good safety. Clinical trials have proved that W. somnifera is effective in treating a variety of human diseases. As a famous traditional medicine and modern dietary supplement, it has a high reputation and market in the international health product market, but in China, there is little scientific research, market development, product introduction and application. In this paper, the traditional application, chemical composition, pharmacological activity, safety evaluation and clinical study of the plant were introduced, so as to increase the understanding of the dual use of the plant, and to provide reference for the future introduction of the product, the service to the health of the Chinese people and the promotion of the "double cycle" of the trade of health products between China and the international community.
Animals
;
China
;
Humans
;
Neoplasms
;
Plant Extracts
;
Withania
;
Withanolides
9.Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus Malassezia restricta
Eunsoo DO ; Hyun Gee LEE ; Minji PARK ; Yong Joon CHO ; Dong Hyeun KIM ; Se Ho PARK ; Daekyung EUN ; Taehun PARK ; Susun AN ; Won Hee JUNG
Mycobiology 2019;47(2):242-249
Betaine derivatives are considered major ingredients of shampoos and are commonly used as antistatic and viscosity-increasing agents. Several studies have also suggested that betaine derivatives can be used as antimicrobial agents. However, the antifungal activity and mechanism of action of betaine derivatives have not yet been fully understood. In this study, we investigated the antifungal activity of six betaine derivatives against Malassezia restricta, which is the most frequently isolated fungus from the human skin and is implicated in the development of dandruff. We found that, among the six betaine derivatives, lauryl betaine showed the most potent antifungal activity. The mechanism of action of lauryl betaine was studied mainly using another phylogenetically close model fungal organism, Cryptococcus neoformans, because of a lack of available genetic manipulation and functional genomics tools for M. restricta. Our genome-wide reverse genetic screening method using the C. neoformans gene deletion mutant library showed that the mutants with mutations in genes for cell membrane synthesis and integrity, particularly ergosterol synthesis, are highly sensitive to lauryl betaine. Furthermore, transcriptome changes in both C. neoformans and M. restricta cells grown in the presence of lauryl betaine were analyzed and the results indicated that the compound mainly affected cell membrane synthesis, particularly ergosterol synthesis. Overall, our data demonstrated that lauryl betaine influences ergosterol synthesis in C. neoformans and that the compound exerts a similar mechanism of action on M. restricta.
Anti-Infective Agents
;
Betaine
;
Cell Membrane
;
Cryptococcus
;
Cryptococcus neoformans
;
Dandruff
;
Ergosterol
;
Fungi
;
Gene Deletion
;
Genetic Testing
;
Genomics
;
Humans
;
Malassezia
;
Methods
;
Skin
;
Transcriptome
10.Melandrium firmum Extract Promotes Hair Growth by Modulating 5α-Reductase Activity and Gene Expression in C57BL/6J Mice
Bo HUANG ; Bueom Goo KANG ; Soon Sung LIM ; Xian Hua ZHANG
Annals of Dermatology 2019;31(5):502-510
BACKGROUND: In our preliminary study, we screened for their potential to inhibit 5α-reductase, and Melandrium firmum (MF) extract showed the most potent activity as confirmed by high-performance liquid chromatography (HPLC). OBJECTIVE: This study aimed to investigate the effects of MF extract on 5α-reductase activity and its mechanisms of action in the prevention or treatment of androgenetic alopecia. METHODS: HPLC was used to measure 5α-reductase activity. The hair growth-promoting effect of MF extract in the shaved dorsal skin of C57BL/6J mice was studied for 30 days. Hair follicles were examined by histological examination. Protein and mRNA levels of growth factors involved in hair growth were determined by western blotting, and reverse transcription-polymerase chain reaction (RT-PCR) and qPCR, respectively. Cell proliferation was measured by (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. RESULTS: MF extract at 0.5 mg/ml showed 43.5% inhibition of 5α-reductase. MF extract promoted hair growth by inducing anagen phase reflected by skin color, hair density, and the number and size of hair follicles. It not only reduces the expression of transforming growth factor-beta 1 (TGF-β1) and Dickkopf-1 (DKK-1), but also markedly upregulated insulin-like growth factor 1 and keratinocyte growth factor in the dorsal dermal tissue. Ursolic acid, ecdcysteron, and ergosterol peroxide were identified as active constituents by activity-guided fractionation to inhibit 5α-reductase. They decreased the gene expression of TGF-β1 and DKK-1 in human hair dermal papilla cells. CONCLUSION: In summary, these finding indicate that MF extract might be a good drug candidate for hair growth promotion.
Alopecia
;
Animals
;
Blotting, Western
;
Cell Proliferation
;
Chromatography, High Pressure Liquid
;
Chromatography, Liquid
;
Ergosterol
;
Fibroblast Growth Factor 7
;
Gene Expression
;
Hair Follicle
;
Hair
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
Mice
;
RNA, Messenger
;
Skin
;
Skin Pigmentation

Result Analysis
Print
Save
E-mail