1.Association of Serine/Threonine Phosphoprotein Phosphatase 4C Expression With Prognosis of Gastric Cancer.
Zhi-Jun GENG ; Ju HUANG ; Qing-Qing LI ; Zhi-Xuan ZHOU ; Jing LI ; Xiao-Feng ZHANG ; Lian WANG ; Yue-Yue WANG ; Xue SONG ; Lu-Gen ZUO
Acta Academiae Medicinae Sinicae 2023;45(5):721-729
Objective To investigate the expression level of serine/threonine phosphoprotein phosphatase 4C(PPP4C)in gastric cancer,and analyze its relationship with prognosis and the underlying regulatory mechanism.Methods The clinical data of 104 gastric cancer patients admitted to the First Affiliated Hospital of Bengbu Medical College between January 2012 and August 2016 were collected.Immunohistochemical staining was employed to determine the expression levels of PPP4C and Ki-67 in the gastric cancer tissue.The gastric cancer cell lines BGC823 and HGC27 were cultured and transfected with the vector for PPP4C knockdown,the vector for PPP4C overexpression,and the lentiviral vector(control),respectively.The effects of PPP4C on the cell cycle and proliferation were analyzed and the possible regulatory mechanisms were explored.Results PPP4C was highly expressed in gastric cancer(P<0.001),and its expression promoted malignant progression of the tumor(all P<0.01).Univariate and Cox multivariate analysis clarified that high expression of PPP4C was an independent risk factor affecting the 5-year survival rate of gastric cancer patients(P=0.003).Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis suggested that PPP4C may be involved in the cell cycle.The correlation analysis showed that the expression of PPP4C was positively correlated with that of Ki-67 in gastric cancer(P<0.001).The up-regulation of PPP4C expression increased the proportion of tumor cells in the S phase,alleviated the G2/M phase arrest,and promoted the proliferation of gastric cancer cells and the expression of cyclin D1 and cyclin-dependent kinase 6(CDK6)(all P<0.05).The down-regulation of PPP4C decreased the proportion of gastric cancer cells in the S phase,promoted G2/M phase arrest,and inhibited cell proliferation and the expression of cyclin D1,CDK6,and p53(all P<0.05).p53 inhibitors promoted the proliferation of BGC823 and HGC27 cells in the PPP4C knockdown group(P<0.001,P<0.001),while p53 activators inhibited the proliferation of BGC823 and HGC27 cells in the PPP4C overexpression group(P<0.001,P=0.002).Conclusions PPP4C is highly expressed in gastric cancer and affects the prognosis of the patients.It may increase the proportion of gastric cancer cells in the S phase and alleviate the G2/M phase arrest by inhibiting p53 signaling,thereby promoting cell proliferation.
Humans
;
Stomach Neoplasms/genetics*
;
Cyclin D1/metabolism*
;
Tumor Suppressor Protein p53
;
Phosphoproteins/metabolism*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Prognosis
;
Cell Proliferation
;
Phosphoprotein Phosphatases/metabolism*
;
Threonine
;
Serine
2.The role of Nrf2 in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated MMP9.
Jing SUN ; Xing Bo XU ; Hong Yue SU ; Li Cheng YAN ; Yan Shu ZHANG ; Li Jin ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):2-7
Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.
Rats
;
Animals
;
Matrix Metalloproteinase 9/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Tight Junction Proteins/metabolism*
;
Occludin/pharmacology*
;
Choroid Plexus/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Lanthanum/pharmacology*
;
Epithelial Cells
;
Zonula Occludens-1 Protein/metabolism*
;
Phosphoproteins/pharmacology*
3.Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy.
Muhammad Babar KHAWAR ; Chao LIU ; Fengyi GAO ; Hui GAO ; Wenwen LIU ; Tingting HAN ; Lina WANG ; Guoping LI ; Hui JIANG ; Wei LI
Protein & Cell 2021;12(1):67-75
Animals
;
Autophagy/genetics*
;
Cholesterol/metabolism*
;
Gene Expression Regulation
;
Integrases/metabolism*
;
Leydig Cells/metabolism*
;
Male
;
Mice, Knockout
;
Multienzyme Complexes/metabolism*
;
Phosphoproteins/metabolism*
;
Primary Cell Culture
;
Progesterone Reductase/metabolism*
;
RNA Splicing Factors/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Sequestosome-1 Protein/metabolism*
;
Signal Transduction
;
Sirtuin 1/genetics*
;
Sodium-Hydrogen Exchangers/metabolism*
;
Steroid 17-alpha-Hydroxylase/metabolism*
;
Steroid Isomerases/metabolism*
;
Testosterone/genetics*
4.Targeting-YAP/TAZ therapies for head and neck cancer, directly or indirectly?
West China Journal of Stomatology 2021;39(5):493-500
YAP/TAZ are wild over-activated in head and neck squamous cell carcinoma (HNSCC) with high potential as a direct therapy target for HNSCC treatments. However, the efforts on the directly targeting-YAP/TAZ therapies over the past decade, have very limited impacts, mainly caused by: 1. There is still none effective and specific YAP/TAZ inhibitor with clinical potential; 2. YAP/TAZ might not be directly targeted, because of their multiple important biological functions, such as: regulation of cell proliferation and survival, stem cell maintain, regulation of organ development, organ size control, and tissue regeneration. Interestingly, the over-activation of YAP/TAZ in HNSCC mainly be regulated by upstream abnormal molecular or biological events, instead of genes alteration of YAP/TAZ. Therefore, exploring the alternative molecular events regulating YAP/TAZ activation and molecular mechanism in HNSCC might help to uncover novel indirect targets of YAP/TAZ therapies for HNSCC prevention and treatment.
Adaptor Proteins, Signal Transducing/metabolism*
;
Head and Neck Neoplasms
;
Humans
;
Phosphoproteins/metabolism*
;
Trans-Activators/metabolism*
;
Transcription Factors
5.Loss of GRB2 associated binding protein 1 in arteriosclerosis obliterans promotes host autophagy.
Meng YE ; Xiang-Jiang GUO ; Ke-Jia KAN ; Qi-Hong NI ; Jia-Quan CHEN ; Han WANG ; Xin QIAN ; Guan-Hua XUE ; Hao-Yu DENG ; Lan ZHANG
Chinese Medical Journal 2020;134(1):73-80
BACKGROUND:
Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy.
METHODS:
In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1.
RESULTS:
The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein.
CONCLUSION
Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.
Adaptor Proteins, Signal Transducing
;
Adult
;
Arteriosclerosis Obliterans/genetics*
;
Autophagy
;
GRB2 Adaptor Protein
;
Humans
;
Phosphoproteins/metabolism*
;
Phosphorylation
;
Protein Binding
;
Signal Transduction
6.YAP1 knockdown suppresses the proliferation, migration and invasion of human nasopharyngeal carcinoma cells.
Yaqing ZHOU ; Rong YANG ; Gang MA
Journal of Southern Medical University 2019;39(3):286-291
OBJECTIVE:
To investigate the effects of Yes-associated protein 1 (YAP1) knockdown on the proliferation, migration and invasion in human nasopharyngeal carcinoma (NPC) cells.
METHODS:
We detected the expression of YAP1 mRNA and protein in different NPC cell lines and an immortalized nasopharyngeal epithelial cell line using RT-PCR and Western blotting. Two YAP1-targeting small interfering RNAs (siRNA) were transfected into NPC cell lines S26 and S18, and the knockdown efficiency was confirmed by RT-PCR and Western blotting. The effect of YAP1 knockdown on the proliferation of the NPC cells was determined by cell counting and colony formation assay; wound healing assay and Transwell assay were used to analyze the changes in the cell migration and invasion abilities in each group. Western blotting was used to analyze the changes in the expressions of c-myc, E-cadherin, N-cadherin and vimentin in the NPC cells after YAP1 knockdown.
RESULTS:
YAP1 was highly expressed in the NPC cell lines. Compared with the negative control group, the NPC cell lines with YAP1 knockdown showed significantly lowered YAP1 expressions at both the mRNA and protein levels ( < 0.05). YAP1 knockdown significantly suppressed the growth, cloning formation, migration and invasion of the NPC cells as compared with control cells ( < 0.01). YAP1 knockdown obviously decreased the expression levels of c-myc, N-cadherin and vimentin and increased E-cadherin expression in the NPC cells.
CONCLUSIONS
YAP1 knockdown siRNA suppresses the proliferation, migration and invasion of NPC cells , suggesting that YAP1 may serve as a therapeutic target for NPC.
Adaptor Proteins, Signal Transducing
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Nasopharyngeal Carcinoma
;
genetics
;
Neoplasm Invasiveness
;
Phosphoproteins
;
genetics
;
metabolism
7.Spatio-temporal expression of dentin sialophosphoprotein and collagen Ⅰ during molar tooth germ development in vps4b knockout mouse.
Dong CHEN ; Ying-Ying WANG ; Xiao-Cong LI ; Fang-Li LU ; Qiang LI
West China Journal of Stomatology 2019;37(3):248-252
OBJECTIVE:
To verify the effect of the mutant gene vps4b on the expression of tooth development-related proteins, dentin sialophosphoprotein (DSPP) and collagenⅠ (COL-Ⅰ).
METHODS:
Paraffin tissue sections of the first molar tooth germ were obtained from the heads of fetal mice at the embryonic stages of 13.5, 14.5, and 16.5 days and from the mandibles of larvae aged 2.5 and 7 days after birth. The immunohistochemical method was used to detect the expression and location of DSPP and COL-Ⅰ in wild-type mouse and vps4b knockout mouse.
RESULTS:
DSPP and COL-Ⅰ were not found in the bud and cap stages of wild-type mouse molar germ. In the bell stage, DSPP was positively expressed in the inner enamel epithelium and dental papilla, whereas COL-Ⅰ was strongly expressed in the dental papilla and dental follicle. During the secretory and mineralized periods, DSPP and COL-Ⅰ were intensely observed in ameloblasts, odontoblasts, and dental follicles, but COL-Ⅰ was also expressed in the dental papilla. After vps4b gene knockout, DSPP was not expressed in the dental papilla of the bell stage and in the dental papilla and dental follicle of the secretory phase. The expression position of COL-Ⅰ in the bell and mineralization phase was consistent with that in the wild-type mice. Moreover, the expression of COL-Ⅰ in the dental papilla changed in the secretory stage.
CONCLUSIONS
Gene vps4b plays a significant role in the development of tooth germ. The expression of DSPP and COL-Ⅰ may be controlled by gene vps4b and regulates the development of tooth dentin and cementum together with vps4b.
ATPases Associated with Diverse Cellular Activities
;
genetics
;
Animals
;
Collagen
;
metabolism
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
Extracellular Matrix Proteins
;
metabolism
;
Mice
;
Mice, Knockout
;
Molar
;
Odontoblasts
;
Phosphoproteins
;
metabolism
;
Sialoglycoproteins
;
metabolism
;
Tooth Germ
9.Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice.
Jiao XU ; Xiu-Ping CAO ; Zi-Juan TANG ; Jian HUANG ; Yue-Hui ZHENG ; Jia LI
Acta Physiologica Sinica 2019;71(3):405-414
The present study was aimed to investigate the expression relationship of Hippo signaling molecules and ovarian germline stem cell (OGSC) markers in the development schedule of OGSCs during ovarian aging in women and mice. The ovaries of 2-month-old mature (normal control) and 12-month-old (physiological ovarian aging) KM mice were sampled, and the ovarian cortex samples of young (postpuberty to 35 years old), middle age (36-50 years old) and menopausal period (51-60 years old) women were obtained with consent. The mice model of pathological ovarian aging was established by intraperitoneal injection of cyclophosphamide/busulfan (CY/BUS). HE staining was used to detect the changes of follicles at different stages, and the localization and expression changes of Hippo signaling molecules and OGSCs related factors (MVH/OCT4) were detected by immunohistochemistry and immunofluorescence staining. Western blot was used to detect the protein expression levels of the major molecules in the Hippo signaling pathway and OGSCs related factors. The results showed that there were not any normal follicles, but a few atresia follicles in the ovaries from physiological and pathological ovarian aging mice. Compared with the normal control mice, both the physiological and pathological ovarian aging mice showed decreased protein expression levels of the main Hippo signaling molecules (pYAP1) and MVH/OCT4; Whereas only the pathological ovarian aging mice showed increased ratio of pYAP1/YAP1. In comparison with the young women, the middle age and menopausal women showed looser structure of ovarian surface epithelium (OSE) and less ovarian cortical cells. The protein expression level of LATS2 in the OSE was the highest in young women, MST1 expression was the lowest in the menopausal period women, and the expression levels of YAP1 and pYAP1 were the highest in middle age women. Compared with the young women, the middle age and menopausal period women exhibited significantly decreased ratio of OSE pYAP1/YAP1, whereas there was no significant difference between them. The expression level of MVH protein in OSE from the young women was significantly higher than those of the middle age and menopausal period women. These results indicate that there is an expression relationship between the main molecules of Hippo signaling pathway and OGSCs related factors, which suggests that Hippo signaling pathway may regulate the expression levels of OGSCs related factors, thus participating in the process of physiological and pathological degeneration of ovarian.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Adult
;
Aging
;
Animals
;
Epithelium
;
Female
;
Humans
;
Mice
;
Middle Aged
;
Octamer Transcription Factor-3
;
metabolism
;
Oogonial Stem Cells
;
metabolism
;
Ovarian Follicle
;
Ovary
;
Phosphoproteins
;
metabolism
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
Tumor Suppressor Proteins
;
metabolism
10.Phosphorylation residue T175 in RsbR protein is required for efficient induction of sigma B factor and survival of Listeria monocytogenes under acidic stress.
Ke HE ; Yong-Ping XIN ; Ying SHAN ; Xian ZHANG ; Hou-Hui SONG ; Wei-Huan FANG
Journal of Zhejiang University. Science. B 2019;20(8):660-669
Listeria monocytogenes is an important zoonotic foodborne pathogen that can tolerate a number of environmental stresses. RsbR, an upstream regulator of the sigma B (SigB) factor, is thought to sense environmental challenges and trigger the SigB pathway. In Bacillus subtilis, two phosphorylation sites in RsbR are involved in activating the SigB pathway and a feedback mechanism, respectively. In this study, the role of RsbR in L. monocytogenes under mild and severe stresses was investigated. Strains with genetic deletion (ΔrsbR), complementation (C-ΔrsbR), and phosphorylation site mutations in the rsbR (RsbR-T175A, RsbR-T209A, and RsbR-T175A-T209A) were constructed to evaluate the roles of these RsbR sequences in listerial growth and survival. SigB was examined at the transcriptional and translational levels. Deletion of rsbR reduced listerial growxth and survival in response to acidic stress. Substitution of the phosphorylation residue RsbR-T175A disabled RsbR complementation, while RsbR-T209A significantly upregulated SigB expression and listerial survival. Our results provide clear evidence that two phosphorylation sites of RsbR are functional in L. monocytogenes under acidic conditions, similar to the situation in B. subtilis.
Alanine/genetics*
;
Bacillus subtilis
;
Bacterial Proteins/metabolism*
;
Binding Sites
;
Gene Deletion
;
Gene Expression Regulation, Bacterial
;
Genetic Complementation Test
;
Homeostasis
;
Hydrogen-Ion Concentration
;
Listeria monocytogenes/metabolism*
;
Listeriosis/microbiology*
;
Mutation
;
Phenotype
;
Phosphoproteins/metabolism*
;
Phosphorylation
;
Sigma Factor/metabolism*
;
Stress, Physiological

Result Analysis
Print
Save
E-mail