1.The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5.
Mi Hee PARK ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2015;47(12):e200-
Endocytosis is differentially regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) and phospholipase D (PLD). However, the relationship between HIF-1alpha and PLD in endocytosis is unknown. HIF-1alpha is degraded through the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1alpha independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1alpha, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1alpha, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1alpha in the EGFR endocytosis pathway.
Animals
;
Blood Proteins/chemistry/*metabolism
;
Endocytosis
;
Female
;
HEK293 Cells
;
HT29 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Mice, Nude
;
Neoplasms/genetics/metabolism/pathology
;
Phospholipase D/chemistry/*metabolism
;
Phosphoproteins/chemistry/*metabolism
;
Protein Structure, Tertiary
;
Receptor, Epidermal Growth Factor/*metabolism
;
Signal Transduction
;
*Up-Regulation
;
Vesicular Transport Proteins/*genetics/metabolism
;
rab5 GTP-Binding Proteins/*metabolism
2.Phospholipase D2 promotes degradation of hypoxia-inducible factor-1alpha independent of lipase activity.
Mi Hee PARK ; Sun Sik BAE ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2015;47(11):e196-
Hypoxia-inducible factor-1alpha (HIF-1alpha) is a key transcriptional mediator that coordinates the expression of various genes involved in tumorigenesis in response to changes in oxygen tension. The stability of HIF-1alpha protein is determined by oxygen-dependent prolyl hydroxylation, which is required for binding of the von Hippel-Lindau protein (VHL), the recognition component of an E3 ubiquitin ligase that targets HIF-1alpha for ubiquitination and degradation. Here, we demonstrate that PLD2 protein itself interacts with HIF-1alpha, prolyl hydroxylase (PHD) and VHL to promote degradation of HIF-1alpha via the proteasomal pathway independent of lipase activity. PLD2 increases PHD2-mediated hydroxylation of HIF-1alpha by increasing the interaction of HIF-1alpha with PHD2. Moreover, PLD2 promotes VHL-dependent HIF-1alpha degradation by accelerating the association between VHL and HIF-1alpha. The interaction of the pleckstrin homology domain of PLD2 with HIF-1alpha also promoted degradation of HIF-1alpha and decreased expression of its target genes. These results indicate that PLD2 negatively regulates the stability of HIF-1alpha through the dynamic assembly of HIF-1alpha, PHD2 and VHL.
Cell Line
;
HEK293 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*metabolism
;
Phospholipase D/*metabolism
;
Prolyl Hydroxylases/metabolism
;
Proteasome Endopeptidase Complex/*metabolism
;
*Protein Interaction Maps
;
Proteolysis
;
Ubiquitin-Protein Ligases/metabolism
;
Von Hippel-Lindau Tumor Suppressor Protein/metabolism
3.Inhibition of phospholipase D2 induces autophagy in colorectal cancer cells.
Won Chan HWANG ; Mi Kyoung KIM ; Ju Hyun SONG ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2014;46(12):e124-
Autophagy is a conserved lysosomal self-digestion process used for the breakdown of long-lived proteins and damaged organelles, and it is associated with a number of pathological processes, including cancer. Phospholipase D (PLD) isozymes are dysregulated in various cancers. Recently, we reported that PLD1 is a new regulator of autophagy and is a potential target for cancer therapy. Here, we investigated whether PLD2 is involved in the regulation of autophagy. A PLD2-specific inhibitor and siRNA directed against PLD2 were used to treat HT29 and HCT116 colorectal cancer cells, and both inhibition and genetic knockdown of PLD2 in these cells significantly induced autophagy, as demonstrated by the visualization of light chain 3 (LC3) puncta and autophagic vacuoles as well as by determining the LC3-II protein level. Furthermore, PLD2 inhibition promoted autophagic flux via the canonical Atg5-, Atg7- and AMPK-Ulk1-mediated pathways. Taken together, these results suggest that PLD2 might have a role in autophagy and that its inhibition might provide a new therapeutic basis for targeting autophagy.
Autophagy/*drug effects
;
Cell Line, Tumor
;
Colorectal Neoplasms/enzymology/*genetics/*therapy
;
Genetic Therapy
;
HCT116 Cells
;
Humans
;
Phospholipase D/*antagonists & inhibitors/*genetics/metabolism
;
Quinolines/*pharmacology
;
*RNA Interference
;
RNA, Small Interfering/genetics/pharmacology
;
Signal Transduction/drug effects
;
Spiro Compounds/*pharmacology
4.Phospholipase D activates HIF-1-VEGF pathway via phosphatidic acid.
Songyi HAN ; Jeongsoon HUH ; Wooseong KIM ; Seongkeun JEONG ; Do Sik MIN ; Yunjin JUNG
Experimental & Molecular Medicine 2014;46(12):e126-
Growth factor-stimulated phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), generating phosphatidic acid (PA) which may act as a second messenger during cell proliferation and survival. Therefore, PLD is believed to play an important role in tumorigenesis. In this study, a potential mechanism for PLD-mediated tumorigenesis was explored. Ectopic expression of PLD1 or PLD2 in human glioma U87 cells increased the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) protein. PLD-induced HIF-1 activation led to the secretion of vascular endothelial growth factor (VEGF), a HIF-1 target gene involved in tumorigenesis. PLD induction of HIF-1alpha was significantly attenuated by 1-butanol which blocks PA production by PLD, and PA per se was able to elevate HIF-1alpha protein level. Inhibition of mTOR, a PA-responsive kinase, reduced the levels of HIF-1alpha and VEGF in PLD-overexpressed cells. Epidermal growth factor activated PLD and increased the levels of HIF-1alpha and VEGF in U87 cells. A specific PLD inhibitor abolished expression of HIF-1alpha and secretion of VEGF. PLD may utilize HIF-1-VEGF pathway for PLD-mediated tumor cell proliferation and survival.
Cell Line, Tumor
;
Epidermal Growth Factor/metabolism
;
Gene Expression Regulation, Neoplastic
;
Glioma/genetics/*metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism
;
Phosphatidic Acids/*metabolism
;
Phospholipase D/genetics/*metabolism
;
*Signal Transduction
;
Transfection
;
Vascular Endothelial Growth Factor A/*metabolism
5.GPI-PLD inhibits the growth of hepatoma cells by down-regulation of PI3K-Akt signaling pathway.
Zhiying YANG ; Chaochao TAN ; Zhiping YANG ; He HUANG ; Jianhua TANG
Journal of Central South University(Medical Sciences) 2014;39(9):873-878
OBJECTIVE:
To clarify the effect of glycosylphosphatidylinositol-specific phospholipase D (GPIPLD) on hepatoma cells HepG2 and the possible molecular mechanism.
METHODS:
MTT, fluorescent staining and Western blot were applied to analyze the effect and molecular mechanism of GPI-PLD on hepatoma cells by transfected high expression GPI-PLD model. We inoculated HepG2 in nude mice models to further clarify the effect of GPI-PLD on hepatoma cells in vivo.
RESULTS:
Compared with the control groups, PI3K-Akt signaling pathway activity and proliferation of hepatoma cells were significantly inhibited in the GPI-PLD group. Nude mice models showed that the tumor growth and tumor weight [(1.87 ± 0.09) g] of the GPI-PLD group were significantly less than those of the blank control group [(2.20 ± 0.17) g] and the negative control group [(2.15 ± 0.09) g]. AST, ALT and AFP serum concentration in the GPI-PLD group were significantly lower than those of the control groups (P<0.05).
CONCLUSION
GPI-PLD can inhibit the proliferation of hepatoma cells and growth in vivo, and promote the apoptosis of hepatoma cells by reducing the activity of PI3K-Akt signaling pathway.
Animals
;
Apoptosis
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cell Line
;
Down-Regulation
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
metabolism
;
pathology
;
Mice
;
Mice, Nude
;
Phosphatidylinositol 3-Kinases
;
Phospholipase D
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Signal Transduction
;
Transfection
6.Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells.
Ju Cheol SON ; Dong Woo KANG ; Kwang Mo YANG ; Kang Yell CHOI ; Tae Gen SON ; Do Sik MIN
Experimental & Molecular Medicine 2013;45(8):e38-
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
Breast Neoplasms/*drug therapy/*enzymology/pathology
;
Cell Death/drug effects/radiation effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects/radiation effects
;
DNA Damage
;
Enzyme Activation/drug effects/radiation effects
;
Enzyme Inhibitors/*pharmacology/*therapeutic use
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Female
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism
;
Phospholipase D/*antagonists & inhibitors/metabolism
;
Radiation Tolerance/*drug effects
;
Radiation, Ionizing
;
p38 Mitogen-Activated Protein Kinases/metabolism
7.The hydrophobic amino acids involved in the interdomain association of phospholipase D1 regulate the shuttling of phospholipase D1 from vesicular organelles into the nucleus.
Experimental & Molecular Medicine 2012;44(10):571-577
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidic acid. PLD is localized in most cellular organelles, where it is likely to play different roles in signal transduction. PLD1 is primarily localized in vesicular structures such as endosomes, lysosomes and autophagosomes. However, the factors defining its localization are less clear. In this study, we found that four hydrophobic residues present in the N-terminal HKD catalytic motif of PLD1, which is involved in intramolecular association, are responsible for vesicular localization. Site-directed mutagenesis of the residues dramatically disrupted vesicular localization of PLD1. Interestingly, the hydrophobic residues of PLD1 are also involved in the interruption of its nuclear localization. Mutation of the residues increased the association of PLD1 with importin-beta, which is known to mediate nuclear importation, and induced the localization of PLD1 from vesicles into the nucleus. Taken together, these data suggest that the hydrophobic amino acids involved in the interdomain association of PLD1 are required for vesicular localization and disturbance of its nuclear localization.
Amino Acid Motifs
;
Amino Acid Sequence
;
Amino Acids/chemistry
;
Cell Nucleus/*enzymology
;
Endosomes/enzymology
;
HEK293 Cells
;
Humans
;
Hydrophobic and Hydrophilic Interactions
;
Lysosomes/enzymology
;
Phagosomes/enzymology
;
Phospholipase D/chemistry/*metabolism
;
Protein Interaction Domains and Motifs
;
Protein Transport
;
Transport Vesicles/*enzymology
8.Phospholipase Activities in Clinical and Environmental Isolates of Acanthamoeba.
The Korean Journal of Parasitology 2011;49(1):1-8
The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phos-pholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase A2 (PLA2) and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA2. Acanthamoeba exhibited optimal phospholipase activities at 37degrees C and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA2-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.
Acanthamoeba/*enzymology/genetics/*isolation & purification/physiology
;
Cell Adhesion
;
Cells, Cultured
;
Endothelial Cells/parasitology
;
Humans
;
Keratitis/*parasitology
;
Phospholipase D/genetics/*metabolism
;
Phospholipases A2/genetics/*metabolism
;
Protozoan Proteins/genetics/*metabolism
;
Soil/*parasitology
9.Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells.
Wei na MA ; Shin Young PARK ; Joong Soo HAN
Experimental & Molecular Medicine 2010;42(6):456-464
As glucose is known to induce insulin secretion in pancreatic beta cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic beta-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.
ADP-Ribosylation Factors/metabolism/physiology
;
Animals
;
Basic Helix-Loop-Helix Transcription Factors/metabolism/physiology
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic/drug effects
;
Glucose/*pharmacology
;
Insulin/*secretion
;
Insulin-Secreting Cells/*drug effects/enzymology/metabolism/secretion
;
Intracellular Signaling Peptides and Proteins/metabolism/physiology
;
Mice
;
Models, Biological
;
Oligodeoxyribonucleotides, Antisense/pharmacology
;
Phospholipase D/antagonists & inhibitors/genetics/metabolism/*physiology
;
Protein-Serine-Threonine Kinases/metabolism/physiology
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism/physiology
;
Signal Transduction/drug effects/genetics
10.Rebamipide-induced downregulation of phospholipase D inhibits inflammation and proliferation in gastric cancer cells.
Dong Woo KANG ; Gyesik MIN ; Do Yoon PARK ; Ki Whan HONG ; Do Sik MIN
Experimental & Molecular Medicine 2010;42(8):555-564
Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFkappaB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer.
Alanine/*analogs & derivatives/pharmacology
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Down-Regulation/*drug effects
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Humans
;
Inflammation/*enzymology/genetics/pathology
;
Isoenzymes/genetics/metabolism
;
NF-kappa B/metabolism
;
Phospholipase D/*genetics/metabolism
;
Promoter Regions, Genetic/genetics
;
Quinolones/*pharmacology
;
Stomach Neoplasms/*enzymology/genetics/*pathology
;
Transcription, Genetic/drug effects

Result Analysis
Print
Save
E-mail