1.Identification and functional analysis of a novel phospholipase D2 gene mutation associated with familial systemic lupus erythematosus.
Lin PENG ; Xinke YUAN ; Lixiao CHEN ; Sijia CHEN ; Ke CHEN
Journal of Central South University(Medical Sciences) 2021;46(3):234-239
OBJECTIVES:
Systemic lupus erythematosus (SLE) is a kind of autoimmune inflammatory connective tissue disease which seriously endangers human health. Genetic factors play a key role in the pathogenesis of SLE. This study aims to investigate a novel phospholipase D2 (PLD2) mutation associated with familial SLE, and further explore the underlying mechanism of the mutation in SLE.
METHODS:
The blood samples from a SLE patient, the patient's parents, and 147 normal controls were collected and DNA was extracted. Whole genome high-throughput sequencing was performed in the patient and her parents and the results were further analyzed by various bioinformatics methods. The wild type (wt), mutant type (mu), and negative control PLD2 plasmids were further constructed and transfected into 293 cells. The expression level of HRAS protein in 293 cells was detected by Western blotting.
RESULTS:
In this SLE family, the female SLE patient and her mother, 1 in generation II and 1 in generation III had typical clinical manifestations of SLE, and all of them had lupus nephritis at early stage. The genetic characteristics are consistent with autosomal dominant inheritance. A novel PLD2 heterozygous mutation (c.2722C>T) was found in the patient and her mother, but not in her father and other normal controls. Compared with wtPLD2 plasmid and negative control PLD2 plasmid, the expression of HRAS in 293 cells transfected with muPLD2 plasmid was significantly up-regulated (both
CONCLUSIONS
PLD2 c.2722C>T mutation may be one of the pathogeny of SLE in this family.
Case-Control Studies
;
Female
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Lupus Erythematosus, Systemic/genetics*
;
Lupus Nephritis
;
Mutation
;
Phospholipase D
2.Association of polymorphisms of NAPE-PLD and FAAH genes with schizophrenia in Chinese Han population.
Peiru SI ; Shulian LIU ; Dongxiao TONG ; Meijin CHENG ; Liwen WANG ; Xiaoli CHENG
Chinese Journal of Medical Genetics 2018;35(2):215-218
OBJECTIVETo assess the association of polymorphisms of N-acyl-phosphatidylethanolamine-phospholipase D (DAPE-PLD) and fatty acid amide hydrolase (FAAH) genes, as well as their interaction, with schizophrenia.
METHODSPolymorphisms of NAPE-PLD rs12540583 and FAAH rs324420, rs2295633, and rs6429600 were determined with PCR - restriction fragment length polymorphism assay and Sanger sequencing. The genotypes of 345 subjects of Han Chinese origin diagnosed with schizophrenia and a 403 controls were compared. The results were analyzed with SPSS 17.0, and the interaction of the two genes was analyzed using a multifactor dimensionality reduction (MDR) method.
RESULTSThe frequency of NAPE-PLD rs12540583 polymorphism was significantly different between the two groups under both dominant and additive models (χ2=17.18 vs. χ2=18.94, P<0.0125). The frequencies of AC genotype and C allele of the patient group at rs12540583 were higher than those of the controls, and the interaction of NAPE-PLD and FAAH was associated with schizophrenia. A four-loci model (rs12540583, rs324420, rs2295633 and rs6429600) can best model the interaction between NAPE-PLD and FAAH.
CONCLUSIONThe AC genotype and C allele of NAPE-PLD rs12540583 locus are risk factors for schizophrenia, and the interaction between NAPE-PLD rs12540583 and FAAH rs324420, rs2295633 and rs6429600 is associated with schizophrenia.
Adult ; Amidohydrolases ; genetics ; Asian Continental Ancestry Group ; genetics ; China ; ethnology ; Female ; Genotype ; Humans ; Male ; Middle Aged ; Phospholipase D ; genetics ; Polymorphism, Genetic ; Schizophrenia ; genetics
3.The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5.
Mi Hee PARK ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2015;47(12):e200-
Endocytosis is differentially regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) and phospholipase D (PLD). However, the relationship between HIF-1alpha and PLD in endocytosis is unknown. HIF-1alpha is degraded through the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1alpha independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1alpha, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1alpha, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1alpha in the EGFR endocytosis pathway.
Animals
;
Blood Proteins/chemistry/*metabolism
;
Endocytosis
;
Female
;
HEK293 Cells
;
HT29 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Mice, Nude
;
Neoplasms/genetics/metabolism/pathology
;
Phospholipase D/chemistry/*metabolism
;
Phosphoproteins/chemistry/*metabolism
;
Protein Structure, Tertiary
;
Receptor, Epidermal Growth Factor/*metabolism
;
Signal Transduction
;
*Up-Regulation
;
Vesicular Transport Proteins/*genetics/metabolism
;
rab5 GTP-Binding Proteins/*metabolism
4.MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma.
Jiwei ZHANG ; Zehua BIAN ; Jialiang ZHOU ; Mingxu SONG ; Zhihui LIU ; Yuyang FENG ; Li ZHE ; Binbin ZHANG ; Yuan YIN ; Zhaohui HUANG
Protein & Cell 2015;6(9):680-688
MicroRNAs (miRNAs) are a type of small non-coding RNAs that are often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the function and the mechanism of miR-638 in carcinoma (GC). The expression of miR-638 in GC and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by counting kit-8 assay. Different assays, including bioinformatics algorithms (TargetScan and miRanda), luciferase report assay and Western blotting, were used to identify the target gene of miR-638 in GC. The expression of miR-638 target gene in clinical CRC tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in GC tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in GC than NCTs, which may induce the corresponding downregulation of miR-638 in GC. Ectopic expression of miR-638 inhibited GC cell growth in vitro. Subsequently, we identified that PLD1 is the target gene of miR-638 in GC, and silencing PLD1 expression phenocopied the inhibitory effect of miR-638 on GC cell proliferation. Furthermore, we observed that PLD1 was overexpressed in GC tissues, and high expression of PLD1 in GC predicted poor overall survival. In summary, we revealed that miR-638 functions as a tumor suppressor in GC through inhibiting PLD1.
3' Untranslated Regions
;
genetics
;
Apoptosis
;
genetics
;
Base Sequence
;
Cell Line, Tumor
;
Cell Proliferation
;
genetics
;
Down-Regulation
;
genetics
;
Humans
;
MicroRNAs
;
genetics
;
Phospholipase D
;
genetics
;
Prognosis
;
Stomach Neoplasms
;
diagnosis
;
enzymology
;
genetics
;
pathology
5.Inhibition of phospholipase D2 induces autophagy in colorectal cancer cells.
Won Chan HWANG ; Mi Kyoung KIM ; Ju Hyun SONG ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2014;46(12):e124-
Autophagy is a conserved lysosomal self-digestion process used for the breakdown of long-lived proteins and damaged organelles, and it is associated with a number of pathological processes, including cancer. Phospholipase D (PLD) isozymes are dysregulated in various cancers. Recently, we reported that PLD1 is a new regulator of autophagy and is a potential target for cancer therapy. Here, we investigated whether PLD2 is involved in the regulation of autophagy. A PLD2-specific inhibitor and siRNA directed against PLD2 were used to treat HT29 and HCT116 colorectal cancer cells, and both inhibition and genetic knockdown of PLD2 in these cells significantly induced autophagy, as demonstrated by the visualization of light chain 3 (LC3) puncta and autophagic vacuoles as well as by determining the LC3-II protein level. Furthermore, PLD2 inhibition promoted autophagic flux via the canonical Atg5-, Atg7- and AMPK-Ulk1-mediated pathways. Taken together, these results suggest that PLD2 might have a role in autophagy and that its inhibition might provide a new therapeutic basis for targeting autophagy.
Autophagy/*drug effects
;
Cell Line, Tumor
;
Colorectal Neoplasms/enzymology/*genetics/*therapy
;
Genetic Therapy
;
HCT116 Cells
;
Humans
;
Phospholipase D/*antagonists & inhibitors/*genetics/metabolism
;
Quinolines/*pharmacology
;
*RNA Interference
;
RNA, Small Interfering/genetics/pharmacology
;
Signal Transduction/drug effects
;
Spiro Compounds/*pharmacology
6.Phospholipase D activates HIF-1-VEGF pathway via phosphatidic acid.
Songyi HAN ; Jeongsoon HUH ; Wooseong KIM ; Seongkeun JEONG ; Do Sik MIN ; Yunjin JUNG
Experimental & Molecular Medicine 2014;46(12):e126-
Growth factor-stimulated phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), generating phosphatidic acid (PA) which may act as a second messenger during cell proliferation and survival. Therefore, PLD is believed to play an important role in tumorigenesis. In this study, a potential mechanism for PLD-mediated tumorigenesis was explored. Ectopic expression of PLD1 or PLD2 in human glioma U87 cells increased the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) protein. PLD-induced HIF-1 activation led to the secretion of vascular endothelial growth factor (VEGF), a HIF-1 target gene involved in tumorigenesis. PLD induction of HIF-1alpha was significantly attenuated by 1-butanol which blocks PA production by PLD, and PA per se was able to elevate HIF-1alpha protein level. Inhibition of mTOR, a PA-responsive kinase, reduced the levels of HIF-1alpha and VEGF in PLD-overexpressed cells. Epidermal growth factor activated PLD and increased the levels of HIF-1alpha and VEGF in U87 cells. A specific PLD inhibitor abolished expression of HIF-1alpha and secretion of VEGF. PLD may utilize HIF-1-VEGF pathway for PLD-mediated tumor cell proliferation and survival.
Cell Line, Tumor
;
Epidermal Growth Factor/metabolism
;
Gene Expression Regulation, Neoplastic
;
Glioma/genetics/*metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism
;
Phosphatidic Acids/*metabolism
;
Phospholipase D/genetics/*metabolism
;
*Signal Transduction
;
Transfection
;
Vascular Endothelial Growth Factor A/*metabolism
7.Phospholipase Activities in Clinical and Environmental Isolates of Acanthamoeba.
The Korean Journal of Parasitology 2011;49(1):1-8
The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phos-pholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase A2 (PLA2) and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA2. Acanthamoeba exhibited optimal phospholipase activities at 37degrees C and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA2-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.
Acanthamoeba/*enzymology/genetics/*isolation & purification/physiology
;
Cell Adhesion
;
Cells, Cultured
;
Endothelial Cells/parasitology
;
Humans
;
Keratitis/*parasitology
;
Phospholipase D/genetics/*metabolism
;
Phospholipases A2/genetics/*metabolism
;
Protozoan Proteins/genetics/*metabolism
;
Soil/*parasitology
8.Expression and activity of glycosylphosphatidylinositol-specific phospholipase d mRNA in bone marrow mononuclear cells isolated from patient with acute myeloid leukemia and their significance.
Guang-Fen XIAO ; Xue-Yuan TANG ; Xin LI ; Can ZENG
Journal of Experimental Hematology 2010;18(1):15-18
This study was purposed to investigate the expression and significance of glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) in bone marrow mononuclear cells (BMMNC) isolated from patients with acute myeloid leukemia (AML), GPI-PLD activity in BMMNC isolated from 78 patients with AML and 15 normal persons was measured by using GPI-anchored placental alkaline phosphatase (PLAP) as a substrate and Triton X-114 phase partitioning. The GPI-PLD mRNA expression was measured by semi-quantitive reverse transcription-polymerase chain reaction (RT-PCR). The results showed that the mRNA expression level and activity of GPI-PLD in BMMNC from de novo AML patients were 1.86 +/- 0.32 and 46.96 +/- 7.15% respectively; the mRNA expression level and activity of GPI-PLD in BMMNC from completely remission and refractory or relapsed patients were 1.26 +/- 0.29, 33.36 +/- 5.13%and 1.79 +/- 0.19, 44.31 +/- 7.22%, while those in BMMNC from normal controls were 1.27 +/- 0.23, 35.38 +/- 5.15% respectively. The mRNA expression level and activity of GPI-PLD in de novo and refractory or relapsed patients were obviously higher than those in normal controls with significant difference (p < 0.01), while the comparison between remitted patients and normal controls showed no statistical difference (p > 0.05). It is concluded that the expression level of GPI-PLD mRNA coincides with GPI-PLD activity. The mRNA expression and activity of GPI-PLD in de novo and refractory or relapsed patients are obviously higher than those in normal controls. It is worthy of further exploring whether GPI-PLD plays a certain role in process of leukemia pathogenesis.
Adolescent
;
Adult
;
Bone Marrow Cells
;
cytology
;
metabolism
;
Case-Control Studies
;
Child
;
Female
;
Humans
;
Leukemia, Myeloid, Acute
;
metabolism
;
pathology
;
Male
;
Middle Aged
;
Phospholipase D
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
Young Adult
9.Rebamipide-induced downregulation of phospholipase D inhibits inflammation and proliferation in gastric cancer cells.
Dong Woo KANG ; Gyesik MIN ; Do Yoon PARK ; Ki Whan HONG ; Do Sik MIN
Experimental & Molecular Medicine 2010;42(8):555-564
Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFkappaB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer.
Alanine/*analogs & derivatives/pharmacology
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Down-Regulation/*drug effects
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Humans
;
Inflammation/*enzymology/genetics/pathology
;
Isoenzymes/genetics/metabolism
;
NF-kappa B/metabolism
;
Phospholipase D/*genetics/metabolism
;
Promoter Regions, Genetic/genetics
;
Quinolones/*pharmacology
;
Stomach Neoplasms/*enzymology/genetics/*pathology
;
Transcription, Genetic/drug effects
10.Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells.
Wei na MA ; Shin Young PARK ; Joong Soo HAN
Experimental & Molecular Medicine 2010;42(6):456-464
As glucose is known to induce insulin secretion in pancreatic beta cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic beta-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.
ADP-Ribosylation Factors/metabolism/physiology
;
Animals
;
Basic Helix-Loop-Helix Transcription Factors/metabolism/physiology
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic/drug effects
;
Glucose/*pharmacology
;
Insulin/*secretion
;
Insulin-Secreting Cells/*drug effects/enzymology/metabolism/secretion
;
Intracellular Signaling Peptides and Proteins/metabolism/physiology
;
Mice
;
Models, Biological
;
Oligodeoxyribonucleotides, Antisense/pharmacology
;
Phospholipase D/antagonists & inhibitors/genetics/metabolism/*physiology
;
Protein-Serine-Threonine Kinases/metabolism/physiology
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism/physiology
;
Signal Transduction/drug effects/genetics

Result Analysis
Print
Save
E-mail