1.PI3K/p110β-specific inhibitors in castration-resistant prostate cancer.
National Journal of Andrology 2017;23(3):195-199
Advanced prostate cancer, especially at the castration-resistant stage, remains incurable clinically and, therefore, urgently requires new therapeutics for the patients. PI3K is a family of critical cell signal transduction molecules and their over-activation is an important factor in cancer development and progression. It has been demonstrated that class IA PI3K p110 is drastically overexpressed in prostate cancer and involved in androgen receptor-mediated gene expression and castration-resistant progression and regarded as a potential therapeutic target for prostate cancer. Several p110-specific inhibitors have been reported recently and two of them, GSK2636771 and AZD8186, are being tested in clinical trials.
Aniline Compounds
;
therapeutic use
;
Chromones
;
therapeutic use
;
Humans
;
Imidazoles
;
therapeutic use
;
Male
;
Morpholines
;
therapeutic use
;
Neoplasm Proteins
;
antagonists & inhibitors
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Phosphoinositide-3 Kinase Inhibitors
;
Prostatic Neoplasms, Castration-Resistant
;
drug therapy
;
enzymology
;
Protein Kinase Inhibitors
;
therapeutic use
2.beta-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells.
Yong Weon YI ; Hyo Jin KANG ; Edward Jeong BAE ; Seunghoon OH ; Yeon Sun SEONG ; Insoo BAE
Experimental & Molecular Medicine 2015;47(2):e143-
An F-box protein, beta-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by beta-TrCP has been widely studied, the regulation of beta-TrCP itself is not well understood yet. In this study, we found that the level of beta-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of beta-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of beta-TrCP1 prior to its degradation. In addition, knockdown of beta-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the beta-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of beta-TrCP1 in TNBC cells and targeting beta-TrCP1 is a potential approach to treat human TNBC.
Cell Line, Tumor
;
Cell Proliferation
;
Cell Survival/drug effects
;
Cyclin E/genetics/metabolism
;
Dose-Response Relationship, Drug
;
Female
;
Furans/pharmacology
;
Gene Knockdown Techniques
;
Humans
;
Models, Biological
;
Multiprotein Complexes/antagonists & inhibitors
;
Phosphatidylinositol 3-Kinases/*antagonists & inhibitors
;
Phosphorylation/drug effects
;
Protein Kinase Inhibitors/*pharmacology
;
Proteolysis/drug effects
;
Proto-Oncogene Proteins c-myc/genetics/metabolism
;
Pyridines/pharmacology
;
Pyrimidines/pharmacology
;
TOR Serine-Threonine Kinases/*antagonists & inhibitors
;
Triple Negative Breast Neoplasms/genetics/*metabolism
;
beta-Transducin Repeat-Containing Proteins/genetics/*metabolism
3.Effects of the phosphoinostitide-3'-kinase delta inhibitor, CAL-101, in combination with Bortezomib on mantle lymophma cells and exploration of its related mechanism.
Fulian QU ; Bing XIA ; Xiaowu LI ; Shanqi GUO ; Le ZHANG ; Chen TIAN ; Yong YU ; Yizhuo ZHANG ; Email: 18622221239@163.COM.
Chinese Journal of Oncology 2015;37(6):412-417
OBJECTIVETo investigate the effect of CAL-101, a selective inhibitor of PI3Kδ, in combination with bortezomib on the proliferation and apoptosis in human mantle cell lymphoma cell lines Z138, HBL-2 and Jeko-1 in vitro, to explore its mechanisms and provide the foundation for effective treatment strategies against mantle cell lymphoma.
METHODSMTT assay was applied to detect the inhibitory effects of CAL-101 and bortezomib either alone or combined on Z138, HBL-2 and Jeko-1 cells. Calcusyn software was used to analyze the synergistic cytotoxicity. Western blot was used to detect the expression of PI3K-p110σ and p-Akt, Akt, p-ERK and ERK proteins after the cells were exposed to different concentrations of CAL-101. Flow cytometry was employed to assess the apoptosis rate. NF-κB kit was used to determine the changes of location of NF-κB P65, and Western blot was applied to detect the level of caswpase-3 and the phosphorylation of Akt in different groups.
RESULTSCAL-101 and BTZ inhibited the proliferation of Z138, HBL-2 and Jeko-1 cells in a dose- and time-dependent manner. CAL-101/BTZ combination induced significantly synergistic cytotoxicity in the MCL cells. The results of Western blot assay showed that CAL-101 significantly blocked the phosphorylation of Akt and ERK in the MCL cell lines. In addition, CAL-101 combined with BTZ induced pronounced apoptosis (P < 0.01). For example, after the Z138 cells exposed to the drugs for 48 h, the apoptosis rates of the control, CAL-101, BTZ and CAL-101 + BTZ groups were: (2.6 ± 1.8)%, (40.0 ± 3.0)%, (34.0 ± 1.0)%, and (67.4 ± 1.0)%, respectively; and when drug treatment was given to HBL-2 cells over 96 h, the apoptosis rates of these four cell groups were (7.4 ± 0.6)%, (30.7 ± 5.7)%, (12.0 ± 1.0)%, and (85.0 ± 4.0)%, respectively. The combination therapy contributed to the enhanced inactivity of nuclear factor-κB (NF-κB) and Akt inactivation in the MCL cell lines (P < 0.05), however, the casepase-3 activity was up-regulated.
CONCLUSIONSThe combination of CAL-101 and bortezomib is muchmore effective in inhibiting proliferation and promoting apoptosis of mantle cell lymphoma cell lines (Z138, HBL-2 and Jeko-1), which may be mediated through inhibiting PI3K/Akt signaling pathway and the transcription of NF-κB.
Antineoplastic Agents ; pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; pharmacology ; Apoptosis ; drug effects ; Blotting, Western ; Boronic Acids ; Bortezomib ; pharmacology ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Class Ia Phosphatidylinositol 3-Kinase ; antagonists & inhibitors ; Dose-Response Relationship, Drug ; Drug Synergism ; Formazans ; Humans ; Lymphoma, Mantle-Cell ; drug therapy ; pathology ; MAP Kinase Signaling System ; drug effects ; NF-kappa B ; metabolism ; Neoplasm Proteins ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Purines ; administration & dosage ; pharmacology ; Pyrazines ; Quinazolinones ; administration & dosage ; pharmacology ; Signal Transduction ; Software ; Tetrazolium Salts
4.Effect of PI3Kδ inhibitor CAL-101 on myeloma cell lines and preliminary study of synergistic effects with other new drugs.
Qing ZHANG ; Bing XIA ; Fulian QU ; Tian YUAN ; Shanqi GUO ; Weipeng ZHAO ; Qian LI ; Hongliang YANG ; Yafei WANG ; Yizhuo ZHANG
Chinese Journal of Hematology 2014;35(10):926-930
OBJECTIVETo investigate the proliferation inhibitory role and mechanism of PI3Kδ inhibitor CAL-101 on multiple myeloma (MM) cells, and to provide new therapeutic options for MM treatment.
METHODSMM cell lines U266 and RPMI8226 cells were treated with various concentrations of CAL-101. MTT assay and CalcuSyn software were performed to determine the inhibitory effect of CAL-101 and the synergistic effect with PCI- 32765, SAHA (suberoylanilide hydroxamic acid), BTZ (Bortezomib) on MM cells. The protein expression level of p-AKT, p-ERK, AKT, ERK and PI3Kδ processed by CAL-101 were analyzed by Western blot.
RESULTSCAL-101 at concentration of 15, 20, 25, 30 and 40 μmol/L could induce significant dose-dependent proliferation inhibition on U266 cells after treatment for 48 hours. The cell proliferation inhibition rates were (33.54 ± 1.23)%, (41.72 ± 1.78)%, (53.67 ± 2.01)%, (68.97 ± 2.11)% and (79.25 ± 1.92)%, respectively. Similar results were found in RPMI8226 cell line. Western blots showed high expression level of p-AKT, p-ERK, AKT, ERK and PI3Kδ in cell lines and MM primary cells. p-AKT and p-ERK protein expression levels were down-regulated significantly by CAL-101 treatment. Synergistic effect has been verified between CAL-101 and PCI-32765, SAHA and Bortezomib in U266 cell line, and PCI-32765, Bortezomib in RPMI8226 cell line with CI values less than 1.
CONCLUSIONCAL-101 could inhibit proliferation of MM cell lines. High levels of p-AKT, p-ERK, AKT, ERK and PI3Kδ protein expression were observed in both cell lines and primary cells. Down-regulation of p-AKT and p-ERK probably related with the mechanism of CAL-101 in MM cell proliferation inhibition. CAL-101 has significant synergistic effect with PCI-32765, SAHA and BTZ.
Boronic Acids ; Bortezomib ; Cell Line, Tumor ; Cell Proliferation ; Down-Regulation ; Humans ; Multiple Myeloma ; pathology ; Phosphatidylinositol 3-Kinases ; antagonists & inhibitors ; Protein Kinase Inhibitors ; pharmacology ; Purines ; pharmacology ; Pyrazines ; Pyrazoles ; Pyrimidines ; Quinazolinones ; pharmacology
5.CAL-101,a novel agent of targeted therapy in hematological malignancies.
Chan-Juan LI ; Qing ZHANG ; Yi-Zhuo ZHANG
Journal of Experimental Hematology 2014;22(2):530-533
CAL-101 is a selective inhibitor of the phosphatidylinositol-3 kinase (PI3K), it inhibits the survival, proliferation and migration of tumor cells by directly inducing apoptosis and inhibiting micro-environmental interactions. It has been determined that the P110δ isoforms of PI3K expressed primarily in cells of hematopoietic lineage, such as B and T cells. This review focuses on the target, mechanism of action, the use and prospect of CAL-101 in tumors of blood and lymph systems.
Animals
;
Class Ia Phosphatidylinositol 3-Kinase
;
antagonists & inhibitors
;
Hematologic Neoplasms
;
drug therapy
;
Humans
;
Purines
;
pharmacology
;
therapeutic use
;
Quinazolinones
;
pharmacology
;
therapeutic use
;
Signal Transduction
;
drug effects
6.Bilirubin Activates Transcription of HIF-1alpha in Human Proximal Tubular Cells Cultured in the Physiologic Oxygen Content.
Sung Gyun KIM ; Shin Young AHN ; Eun Seong LEE ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S146-S154
The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.
Bilirubin/*pharmacology
;
Cell Line
;
Epithelial Cells/cytology/metabolism
;
Humans
;
Hydrogen Peroxide/toxicity
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism
;
Kidney Tubules, Proximal/cytology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Oxygen/*pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
RNA Interference
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism
;
Signal Transduction/drug effects
;
TOR Serine-Threonine Kinases/metabolism
;
Transcriptional Activation/*drug effects
;
Up-Regulation/drug effects
7.Efficacy of combination treatment of the inhibitor of phosphatidyl inositol-3-kinase/protein kinase B pathway BEZ235 and the inhibitor of extracellular regulated protein kinase/mitogen-activated protein kinase pathway U0126 in a tumor cell model.
Xin-xin CHEN ; Shu ZHANG ; Yu-zhuo SHI
Acta Academiae Medicinae Sinicae 2013;35(5):530-534
OBJECTIVETo study the inhibitory effect of the dual usage of BEZ235 and U0126, the inhibitor of phosphatidyl inositol-3-kinase/protein kinase B pathway and extracellular regulated proteinkinase/mitogen-activated protein kinase pathway, respectively, on cell proliferation.
METHODSPhosphatase and tensin homolog knockout mouse embryonic fibroblast (PTEN-/-MEF) cell lines were used as the cellular model for malignant tumors. BEZ235, the dual inhibitor of phosphatidyl inositol-3-kinase and mammalian target of rapamycin, and U0126, the inhibitor of mitogen-activated protein kinase were used to treat the cells individually and in a combination manner. The inhibitory effects to cell proliferation were monitored by MTT.
RESULTSBoth BEZ235 and U0126 suppressed PTEN knockout cell proliferation, and their half inhibitory concentrations were 6.257 nmol/L and 22.85 μmol/L, respectively. However, the combination treatment of the two drugs showed antagonistic rather than synergistic effect on cell proliferation.
CONCLUSIONBEZ235 and U0126 are not suitable for a combined target therapy regimen.
Animals ; Butadienes ; pharmacology ; Cell Line ; Cell Proliferation ; drug effects ; Drug Antagonism ; Fibroblasts ; drug effects ; Imidazoles ; pharmacology ; Mice ; Mice, Knockout ; Nitriles ; pharmacology ; Phosphatidylinositol 3-Kinase ; antagonists & inhibitors ; pharmacology ; Quinolines ; pharmacology
8.Growth inhibition of combined pathway inhibitors on KRAS mutated non-small cell lung cancer cell line.
Zhan-wen LI ; Zhen-li YANG ; Hai-liang FENG ; Xiao-cui BIAN ; Yan-yan LIU ; Yu-qin LIU
Chinese Journal of Pathology 2013;42(5):330-335
OBJECTIVETo investigate the effect of the selective PI3K inhibitor and MEK inhibitor on KRAS and PTEN co-mutated non-small cell lung cancer cell line NCI-H157 and the relevant mechanisms.
METHODSNCI-H157 was cultured routinely and treated with different concentrations of the two inhibitors. Cell proliferation was detected by MTT cell cycle assay. Based on the MTT results the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941, 0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244 + 0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244 + 5.0 µmol/L GDC-0941). Colony formation assay was performed to detect colony formation efficiency. The cell cycle and apoptosis were analyzed by flow cytometry. The expression of protein related to apoptosis was tested with Western blot.
RESULTSCell growth was inhibited by the two inhibitors. Combination groups led to stronger cell proliferation inhibition: combination group Ishowed synergistic effect of their actions and combination group II showed an additive effect; in both groups, there were decreased colony number [(77.2 ± 1.54)/well vs (61.50 ± 2.12)/well, P < 0.01] and [(51.00 ± 4.00)/ well vs (22.50 ± 3.53)/well, P < 0.01]; and enhanced apoptotic ratios [(18.30 ± 0.82)% vs (21.32 ± 0.56)%, P < 0.01] and [(27.14 ± 1.58)% vs (42.45 ± 4.42)%, P < 0.01]. In addition, compared to the PI3K inhibitor alone group, the NCI-H157 cells in the combination groups showed increased G0/G1 phase and decreased S phase (P < 0.01). Western blotting showed that the combination groups demonstrated significantly decreased expression of cyclin D1 and cyclin B1, increased p21 and cleaved PARP and decreased bcl-2/bax ratio, compared to the PI3K inhibitor only group.
CONCLUSIONThe combined inhibition of PI3K (AZD6244) and MEK (GDC-0941) has synergistic effects on the proliferation of NCI-H157 cells, but such effects appear to be in a dose-dependent manner.
Apoptosis ; drug effects ; Benzimidazoles ; administration & dosage ; pharmacology ; Carcinoma, Non-Small-Cell Lung ; genetics ; pathology ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cyclin B1 ; metabolism ; Cyclin D1 ; metabolism ; Dose-Response Relationship, Drug ; Drug Synergism ; Humans ; Indazoles ; administration & dosage ; pharmacology ; Lung Neoplasms ; genetics ; pathology ; Mitogen-Activated Protein Kinase Kinases ; antagonists & inhibitors ; metabolism ; Mutation ; PTEN Phosphohydrolase ; genetics ; Phosphatidylinositol 3-Kinases ; antagonists & inhibitors ; metabolism ; Poly(ADP-ribose) Polymerases ; metabolism ; Proto-Oncogene Proteins ; genetics ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Proto-Oncogene Proteins p21(ras) ; metabolism ; Signal Transduction ; Sulfonamides ; administration & dosage ; pharmacology ; bcl-2-Associated X Protein ; metabolism ; ras Proteins ; genetics
9.Salidroside via ERK1/2 and PI3K/AKT/mTOR signal pathway induces mouse bone marrow mesenchymal stem cells differentiation into neural cells.
Ya-Nan CHEN ; Hui LIU ; Hong-Bin ZHAO ; Yang LIU ; Jie BAI ; Xiao-Juan ZHU ; Yu WANG
Acta Pharmaceutica Sinica 2013;48(8):1247-1252
To investigate the role of the extracellular signal-regulated kinase (ERK1/2) and PI3K/AKT/ mTOR signal pathway inducing bone marrow mesenchymal stem cells (BMSCs) differentiation into neural cells, mouse bone marrow-derived mesenchymal stem cell lines D1 cells were used as research object. And they were divided into control groups and salidroside (SD) groups. Different concentrations (5, 25, 50, 100 and 200 microg x mL(-1) of SD were used and SD (100 microg x mL(-1)) was used to induce at different time (0.5, 1, 3, 6, 9, 12, 24, 48 and 72 h). The immunofluorescence staining chemical technology, real-time PCR and Western blotting were used to detect the positive rates of NSE, MAP2, beta-Tubulin III, NES, GFAP and the expression levels of beta-Tubulin III, NSE, ERK1/2, AKT. The expression of ERK1/2 and NSE was detected when the ERK1/2 and PI3K/AKT/ mTOR signal pathway was blocked by PD98059 and LY294002. It indicated that the positive rates of NSE, MAP2, beta-Tubulin III, NES and GFAP were gradually enhanced with time increased. The expression level of NSE and beta-Tubulin III protein were significantly higher than those in control groups (P < 0.01). The expression of ERK1/2, AKT mRNA and protein were higher with concentration and time increased. When the ERK1/2 and PI3K/AKT/mTOR signal pathway were blocked, the expression levels of NSE, NES and beta-Tubulin III mRNA and NSE protein were inhibited significantly. It points out that SD can stimulate the ERK1/2 and PI3K/AKT/mTOR signal pathway to promote BMSCs differentiation into neural cells.
Animals
;
Bone Marrow Cells
;
cytology
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Chromones
;
pharmacology
;
Enzyme Inhibitors
;
pharmacology
;
Flavonoids
;
pharmacology
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Glucosides
;
antagonists & inhibitors
;
isolation & purification
;
pharmacology
;
MAP Kinase Signaling System
;
drug effects
;
Mesenchymal Stromal Cells
;
cytology
;
Mice
;
Microtubule-Associated Proteins
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
genetics
;
metabolism
;
Morpholines
;
pharmacology
;
Nestin
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Phenols
;
antagonists & inhibitors
;
isolation & purification
;
pharmacology
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Phosphopyruvate Hydratase
;
genetics
;
metabolism
;
Plants, Medicinal
;
chemistry
;
Protein Kinase Inhibitors
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
RNA, Messenger
;
metabolism
;
Rhodiola
;
chemistry
;
Signal Transduction
;
drug effects
;
TOR Serine-Threonine Kinases
;
metabolism
;
Tubulin
;
metabolism
10.Advances in the study of inhibitors of kinases and nuclear factors for treating allergic asthma.
Ren-Ping LIU ; Ai-Min MENG ; Qi HOU
Acta Pharmaceutica Sinica 2012;47(6):689-695
Currently, about 300 million people worldwide are affected by asthma. Most of these sufferers inhale immunosuppressants (ie corticosteroids) and beta-adrenergic receptor agonists for their asthma treatment. However, about 5%-10% of patients of asthma have poor response to such treatment. Investigation of kinase signaling pathway and nuclear transcription factor as a target molecule in the treatment of allergic asthma has been the concern of scholars home and abroad. This paper reviewed inhibitors of kinase signaling pathway and nuclear transcription factors for the treatment of asthma.
Animals
;
Asthma
;
drug therapy
;
enzymology
;
Humans
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
Phosphatidylinositol 3-Kinase
;
antagonists & inhibitors
;
Protein Kinase Inhibitors
;
therapeutic use
;
Protein-Tyrosine Kinases
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Transcription Factors
;
antagonists & inhibitors

Result Analysis
Print
Save
E-mail