1.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
2.Incidence and Temporal Dynamics of Combined Infections in SARS-CoV-2-Infected Patients With Risk Factors for Severe Complications
Sin Young HAM ; Seungjae LEE ; Min-Kyung KIM ; Jaehyun JEON ; Eunyoung LEE ; Subin KIM ; Jae-Phil CHOI ; Hee-Chang JANG ; Sang-Won PARK
Journal of Korean Medical Science 2025;40(11):e38-
Background:
Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease that needs further clinical investigation. Characterizing the temporal pattern of combined infections in patients with COVID-19 may help clinicians understand the clinical nature of this disease and provide valuable diagnostic and therapeutic guidelines.
Methods:
We retrospectively analyzed COVID-19 patients isolated in four study hospitals in Korea for one year period from May 2021 to April 2022 when the delta and omicron variants were dominant. The temporal characteristics of combined infections based on specific diagnostic tests were analyzed.
Results:
A total of 16,967 COVID-19 patients were screened, 2,432 (14.3%) of whom underwent diagnostic microbiologic tests according to the clinical decision-making, 195 of whom had positive test results, and 0.55% (94/16,967) of whom were ultimately considered to have clinically meaningful combined infections. The median duration for the diagnosis of combined infections was 15 (interquartile range [IQR], 5–25) days after admission. The proportion of community-acquired coinfections (≤ 2 days after admission) was 11.7% (11/94), which included bacteremia (10/94, 10.63%) and tuberculosis (1/94, 1.06%). Combined infections after 2 days of admission were diagnosed at median 16 (IQR, 9–26) days, and included bacteremia (72.3%), fungemia (19.3%), cytomegalovirus (CMV) diseases (8.4%), Pneumocystis jerovecii pneumonia (PJP, 8.4%) and invasive pulmonary aspergillosis (IPA, 4.8%).
Conclusion
Among COVID-19 patients with risk factors for severe complications, 0.55% had laboratory-confirmed combined infections, which included community and nosocomial pathogens in addition to unusual pathogens such as CMV disease, PJP and IPA.
3.Incidence and Temporal Dynamics of Combined Infections in SARS-CoV-2-Infected Patients With Risk Factors for Severe Complications
Sin Young HAM ; Seungjae LEE ; Min-Kyung KIM ; Jaehyun JEON ; Eunyoung LEE ; Subin KIM ; Jae-Phil CHOI ; Hee-Chang JANG ; Sang-Won PARK
Journal of Korean Medical Science 2025;40(11):e38-
Background:
Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease that needs further clinical investigation. Characterizing the temporal pattern of combined infections in patients with COVID-19 may help clinicians understand the clinical nature of this disease and provide valuable diagnostic and therapeutic guidelines.
Methods:
We retrospectively analyzed COVID-19 patients isolated in four study hospitals in Korea for one year period from May 2021 to April 2022 when the delta and omicron variants were dominant. The temporal characteristics of combined infections based on specific diagnostic tests were analyzed.
Results:
A total of 16,967 COVID-19 patients were screened, 2,432 (14.3%) of whom underwent diagnostic microbiologic tests according to the clinical decision-making, 195 of whom had positive test results, and 0.55% (94/16,967) of whom were ultimately considered to have clinically meaningful combined infections. The median duration for the diagnosis of combined infections was 15 (interquartile range [IQR], 5–25) days after admission. The proportion of community-acquired coinfections (≤ 2 days after admission) was 11.7% (11/94), which included bacteremia (10/94, 10.63%) and tuberculosis (1/94, 1.06%). Combined infections after 2 days of admission were diagnosed at median 16 (IQR, 9–26) days, and included bacteremia (72.3%), fungemia (19.3%), cytomegalovirus (CMV) diseases (8.4%), Pneumocystis jerovecii pneumonia (PJP, 8.4%) and invasive pulmonary aspergillosis (IPA, 4.8%).
Conclusion
Among COVID-19 patients with risk factors for severe complications, 0.55% had laboratory-confirmed combined infections, which included community and nosocomial pathogens in addition to unusual pathogens such as CMV disease, PJP and IPA.
4.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
5.Incidence and Temporal Dynamics of Combined Infections in SARS-CoV-2-Infected Patients With Risk Factors for Severe Complications
Sin Young HAM ; Seungjae LEE ; Min-Kyung KIM ; Jaehyun JEON ; Eunyoung LEE ; Subin KIM ; Jae-Phil CHOI ; Hee-Chang JANG ; Sang-Won PARK
Journal of Korean Medical Science 2025;40(11):e38-
Background:
Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease that needs further clinical investigation. Characterizing the temporal pattern of combined infections in patients with COVID-19 may help clinicians understand the clinical nature of this disease and provide valuable diagnostic and therapeutic guidelines.
Methods:
We retrospectively analyzed COVID-19 patients isolated in four study hospitals in Korea for one year period from May 2021 to April 2022 when the delta and omicron variants were dominant. The temporal characteristics of combined infections based on specific diagnostic tests were analyzed.
Results:
A total of 16,967 COVID-19 patients were screened, 2,432 (14.3%) of whom underwent diagnostic microbiologic tests according to the clinical decision-making, 195 of whom had positive test results, and 0.55% (94/16,967) of whom were ultimately considered to have clinically meaningful combined infections. The median duration for the diagnosis of combined infections was 15 (interquartile range [IQR], 5–25) days after admission. The proportion of community-acquired coinfections (≤ 2 days after admission) was 11.7% (11/94), which included bacteremia (10/94, 10.63%) and tuberculosis (1/94, 1.06%). Combined infections after 2 days of admission were diagnosed at median 16 (IQR, 9–26) days, and included bacteremia (72.3%), fungemia (19.3%), cytomegalovirus (CMV) diseases (8.4%), Pneumocystis jerovecii pneumonia (PJP, 8.4%) and invasive pulmonary aspergillosis (IPA, 4.8%).
Conclusion
Among COVID-19 patients with risk factors for severe complications, 0.55% had laboratory-confirmed combined infections, which included community and nosocomial pathogens in addition to unusual pathogens such as CMV disease, PJP and IPA.
6.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
7.Incidence and Temporal Dynamics of Combined Infections in SARS-CoV-2-Infected Patients With Risk Factors for Severe Complications
Sin Young HAM ; Seungjae LEE ; Min-Kyung KIM ; Jaehyun JEON ; Eunyoung LEE ; Subin KIM ; Jae-Phil CHOI ; Hee-Chang JANG ; Sang-Won PARK
Journal of Korean Medical Science 2025;40(11):e38-
Background:
Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease that needs further clinical investigation. Characterizing the temporal pattern of combined infections in patients with COVID-19 may help clinicians understand the clinical nature of this disease and provide valuable diagnostic and therapeutic guidelines.
Methods:
We retrospectively analyzed COVID-19 patients isolated in four study hospitals in Korea for one year period from May 2021 to April 2022 when the delta and omicron variants were dominant. The temporal characteristics of combined infections based on specific diagnostic tests were analyzed.
Results:
A total of 16,967 COVID-19 patients were screened, 2,432 (14.3%) of whom underwent diagnostic microbiologic tests according to the clinical decision-making, 195 of whom had positive test results, and 0.55% (94/16,967) of whom were ultimately considered to have clinically meaningful combined infections. The median duration for the diagnosis of combined infections was 15 (interquartile range [IQR], 5–25) days after admission. The proportion of community-acquired coinfections (≤ 2 days after admission) was 11.7% (11/94), which included bacteremia (10/94, 10.63%) and tuberculosis (1/94, 1.06%). Combined infections after 2 days of admission were diagnosed at median 16 (IQR, 9–26) days, and included bacteremia (72.3%), fungemia (19.3%), cytomegalovirus (CMV) diseases (8.4%), Pneumocystis jerovecii pneumonia (PJP, 8.4%) and invasive pulmonary aspergillosis (IPA, 4.8%).
Conclusion
Among COVID-19 patients with risk factors for severe complications, 0.55% had laboratory-confirmed combined infections, which included community and nosocomial pathogens in addition to unusual pathogens such as CMV disease, PJP and IPA.
8.Masticatory Function, Sex, and Risk of Dementia Among Older Adults:A Population-Based Cohort Study
Dae Jong OH ; Ji Won HAN ; Jun Sung KIM ; Tae Hui KIM ; Kyung Phil KWAK ; Bong Jo KIM ; Shin Gyeom KIM ; Jeong Lan KIM ; Seok Woo MOON ; Joon Hyuk PARK ; Seung-Ho RYU ; Jong Chul YOUN ; Dong Young LEE ; Dong Woo LEE ; Seok Bum LEE ; Jung Jae LEE ; Jin Hyeong JHOO ; Ki Woong KIM
Journal of Korean Medical Science 2024;39(36):e246-
Background:
A decline in masticatory function may indicate brain dysfunction related to dementia, but the relationship between masticatory function and dementia risk remains unclear. This study aimed to investigate whether masticatory function is associated with the risk of cognitive decline and dementia.
Methods:
Data were obtained from the nationwide prospective cohort study of randomly sampled community-dwelling Koreans aged ≥ 60 years. The 5,064 non-demented participants, whose number of chewing cycles per bite was assessed by clinical interview, were followed for 8 years with biennial assessments of cognitive performance and clinical diagnoses of all-cause dementia and Alzheimer’s disease (AD). Structural brain magnetic resonance imaging was collected from a subset of cohort participants and their spouses for imaging analyses.
Results:
Males who chewed ≥ 30 cycles/bite had faster decline in global cognition and memory function and were at higher risk for incident all-cause dementia (hazard ratio [HR], 2.91; 95% confidence interval [CI], 1.18–7.18) and AD (HR, 3.22; 95% CI, 1.14–9.11) compared to males with less than 10 cycles/bite. Additionally, increased chewing cycles in males were associated with reduced brain volume, particularly in regions involved in compensatory cognitive control of mastication. There was no significant association between chewing cycles and the risk of dementia or brain volume in females.
Conclusion
Older men who frequently chew their meals could be considered a notable population at risk for dementia who should be carefully assessed for their cognitive trajectories.
9.Comparing Montreal Cognitive Assessment Performance in Parkinson’s Disease Patients: Age- and Education-Adjusted Cutoffs vs. Machine Learning
Kyeongmin BAEK ; Young Min KIM ; Han Kyu NA ; Junki LEE ; Dong Ho SHIN ; Seok-Jae HEO ; Seok Jong CHUNG ; Kiyong KIM ; Phil Hyu LEE ; Young H. SOHN ; Jeehee YOON ; Yun Joong KIM
Journal of Movement Disorders 2024;17(2):171-180
Objective:
The Montreal Cognitive Assessment (MoCA) is recommended for general cognitive evaluation in Parkinson’s disease (PD) patients. However, age- and education-adjusted cutoffs specifically for PD have not been developed or systematically validated across PD cohorts with diverse education levels.
Methods:
In this retrospective analysis, we utilized data from 1,293 Korean patients with PD whose cognitive diagnoses were determined through comprehensive neuropsychological assessments. Age- and education-adjusted cutoffs were formulated based on 1,202 patients with PD. To identify the optimal machine learning model, clinical parameters and MoCA domain scores from 416 patients with PD were used. Comparative analyses between machine learning methods and different cutoff criteria were conducted on an additional 91 consecutive patients with PD.
Results:
The cutoffs for cognitive impairment decrease with increasing age within the same education level. Similarly, lower education levels within the same age group correspond to lower cutoffs. For individuals aged 60–80 years, cutoffs were set as follows: 25 or 24 years for those with more than 12 years of education, 23 or 22 years for 10–12 years, and 21 or 20 years for 7–9 years. Comparisons between age- and education-adjusted cutoffs and the machine learning method showed comparable accuracies. The cutoff method resulted in a higher sensitivity (0.8627), whereas machine learning yielded higher specificity (0.8250).
Conclusion
Both the age- and education-adjusted cutoff methods and machine learning methods demonstrated high effectiveness in detecting cognitive impairment in PD patients. This study highlights the necessity of tailored cutoffs and suggests the potential of machine learning to improve cognitive assessment in PD patients.

Result Analysis
Print
Save
E-mail