1.A new phenolic compound from endophytic fungus Aspergillus fumigatus of Euphorbia royleana.
Yan-Jun CHEN ; Yan-Qi SUN ; Rui-Qi ZHANG ; Li-Jun ZHU ; Yi-Jian CHEN ; Li-Juan YANG ; Min ZHOU ; Miao DONG ; Yan-Qing YE
China Journal of Chinese Materia Medica 2019;44(24):5429-5432
This research was carried out to study the secondary metabolites of endophytic fungus Aspergillosis fumigatus from Euphorbia royleana. The endophytic fungus A. fumigatus was fermented by solid fermentation,and purified by various chromatographic methods after extraction. The structures of the compounds were identified by1 H-NMR,13 C-NMR and HSQC,HMBC spectra and physicchemical properties. Three compounds were isolated and their structures were identified as 3-( 3,4-dihydroxybenzoyl)-5-( 3,4-dihydroxyphenyl)-6-methyl-5,6-dihydro-2 H-pyran-2-one( 1),hydroxysydonic acid( 2) and 11-hydroxysydonic acid( 3). Compound 1 is a new compound.
Aspergillus fumigatus/chemistry*
;
Endophytes/chemistry*
;
Euphorbia/microbiology*
;
Fermentation
;
Phenols/isolation & purification*
2.Phenolic constituents from stems of Ilex asprella.
Jian-Yong XING ; Bing-Zhao DU ; Xiao FENG ; He-Xin-Ge ZHANG ; Zheng-Zhou HAN ; Zeng-Ping GAO ; Peng-Fei TU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2018;43(21):4267-4273
Phytochemical investigation on Ilex asprella stems by using various chromatographic techniques led to the isolation of 18 phenolic constituents. Based on spectroscopic data analyses and/or comparison of the spectroscopic data with those in literature, these constituents were identified, including two lignans (1, 2), five phenylpropanes (3-7), six chlorogenic analogues (8-13), and five benzoic analogues (14-18). Among them, compounds 3-7, 9, 11, 13, 14, 17, and 18 were isolated from genus Ilex for the first time, and 2, 8, 10, 15, and 16 were isolated from this species for the first time. The in vitro anti-inflammatory assay results showed that compounds 8, 9, 11, 13, and 15 possessed moderate inhibition on the NO production in RAW264.7 cells with IC₅₀ values of 51.1-85.8 μmol·L⁻¹. The present study brought preliminary reference for the clarification of therapeutic ingredients of I. asprella with anti-inflammatory efficacy and its quality evaluation.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Ilex
;
chemistry
;
Mice
;
Nitric Oxide
;
metabolism
;
Phenols
;
chemistry
;
Phytochemicals
;
isolation & purification
;
pharmacology
;
Plant Stems
;
chemistry
;
RAW 264.7 Cells
3.Two new phenolic glycosides isolated from Ginkgo seeds.
Shu-Jun SHAN ; Pan-Pan ZHANG ; Jun LUO ; Ling-Yi KONG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):505-508
Two new phenolic glycosides, 7S, 8R-urolignoside-9'-O-β-D-glucoside (1) and scrophenoside G (2), were isolated and identified from the seeds of Ginkgo biloba L., a famous traditional medicine and functional food around the world. Their structures were elucidated by spectroscopic methods (1D and 2D NMR, HR-ESI-MS, and CD), and the comparisons of spectroscopic data with the reported values in the literature.
Ginkgo biloba
;
chemistry
;
Glycosides
;
chemistry
;
isolation & purification
;
Molecular Structure
;
Phenols
;
chemistry
;
isolation & purification
;
Plant Extracts
;
chemistry
;
Plants, Medicinal
;
chemistry
;
Seeds
;
chemistry
;
Spectrum Analysis
4.Advances in extraction and analysis of phenolic compounds from plant materials.
Cong-Cong XU ; Bing WANG ; Yi-Qiong PU ; Jian-Sheng TAO ; Tong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(10):721-731
Phenolic compounds, the most abundant secondary metabolites in plants, have received more and more attention in recent years because of their distinct bioactivities. This review summarizes different types of phenolic compounds and their extraction and analytical methods used in the recent reports, involving 59 phenolic compounds from 52 kinds of plants. The extraction methods include solid-liquid extraction, ultrasound-assisted extractions, microwave-assisted extractions, supercritical fluid extraction, and other methods. The analysis methods include spectrophotometry, gas chromatography, liquid chromatography, thin-layer chromatography, capillary electrophoresis, and near-infrared spectroscopy. After illustrating the specific conditions of the analytical methods, the advantages and disadvantages of each method are also summarized, pointing out their respective suitability. This review provides valuable reference for identification and/or quantification of phenolic compounds from natural products.
Phenols
;
chemistry
;
isolation & purification
;
Plant Extracts
;
chemistry
;
isolation & purification
;
Plants
;
chemistry
5.Two new phenolic glycosides isolated from the fruits of Citrus aurantium.
Xiao-Li ZHANG ; Wen-Feng XU ; Gang CHEN ; Hai-Feng WANG ; Yue-Hu PEI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(1):41-44
The present study was designed to investigate the chemical constituents of the fruit of Citrus aurantium L.. The compounds were isolated and purified by various chromatographic techniques, and their structures were elucidated on the basis of physicochemical properties and spectral data. Two new phenolic glycosides (compounds 1 and 2) were obtained and identified as 1-O-3, 5-dihydroxyphenyl-(6-O-4-hydroxybenzoyl)-β-D-glucopyranoside (1) and 1-O-3, 5-dihydroxyphenyl-(6-O-3-methoxy-4-hydroxy benzoyl)-β-D-glucopyranoside (2), respectively.
Citrus
;
chemistry
;
Fruit
;
chemistry
;
Glucosides
;
chemistry
;
isolation & purification
;
Glycosides
;
chemistry
;
isolation & purification
;
Molecular Structure
;
Phenols
;
chemistry
;
isolation & purification
;
Plant Extracts
;
chemistry
6.Optimization of extraction technology for salidroside, tyrosol, crenulatin and gallic acid in Rhodiolae Crenulatae Radix et Rhizoma with orthogonal test.
Xin LUO ; Xue-jing WANG ; Yi-wu ZHAO ; Wen-zhe HUANG ; Zhen-zhong WANG ; Wei XIAO
China Journal of Chinese Materia Medica 2015;40(18):3590-3593
The extracting technology of salidroside, tyrosol, crenulatin and gallic acid from Rhodiolae Crenulatae Radix et Rhizoma was optimized. With extraction rate of salidroside, tyrosol, crenulatin and gallic acid as indexes, orthogonal test was used to evaluate effect of 4 factors on extracting technology, including concentration of solvent, the dosage of solvent, duration of extraction, and frequency of extraction. The results showed that, the best extracting technology was to extract in 70% alcohol with 8 times the weight of herbal medicine for 2 times, with 3 hours once. High extraction rate of salidroside, tyrosol, crenulatin and gallic acid were obtained with the present technology. The extracting technology was stable and feasible with high extraction rate of four compounds from Rhodiolae Crenulatae Radix et Rhizoma, it was suitable for industrial production.
Chemical Fractionation
;
methods
;
Chemistry, Pharmaceutical
;
methods
;
Coumarins
;
isolation & purification
;
Drugs, Chinese Herbal
;
isolation & purification
;
Gallic Acid
;
isolation & purification
;
Glucosides
;
isolation & purification
;
Phenols
;
isolation & purification
;
Phenylethyl Alcohol
;
analogs & derivatives
;
isolation & purification
;
Rhizome
;
chemistry
;
Rhodiola
;
chemistry
7.Simultaneously preparation of grams of high purity tyrosol, crenulatin and salidroside from Rhodiola crenulata.
Xin LUO ; Xue-jing WANG ; Shi-ping LI ; Qiao ZHANG ; Yi-wu ZHAO ; Huang WEN-ZHE ; Zhen-zhong WANG ; Wei XIAO
China Journal of Chinese Materia Medica 2015;40(7):1300-1304
Tyrosol, crenulatin and salidroside are the main active constituents of Rhodiola crenulata, with extensive pharmacological activities. In the study, grams of high purity tyrosol, crenulatin and salidroside were simultaneously separated from R. crenulata by the first time. Firstly, R. crenulata was extracted by 70% alcohol. Then, with the yields of three compounds as the index, the macroporous resin was optimized. At last, grams of high purity tyrosol, crenulatin and salidroside were isolated by D-101 macroporousresin, purified by column chromatography. Detected by HPLC, the purity of three compounds were higher than 98%. This method has the advantages of simple process and operation, less dosage of organic solvent, highly yield and reproducibility, suitable for the simultaneously preparation of tyrosol, crenulatin and salidroside.
Chemical Fractionation
;
methods
;
Chemistry, Pharmaceutical
;
Chromatography, High Pressure Liquid
;
Coumarins
;
analysis
;
isolation & purification
;
Drugs, Chinese Herbal
;
analysis
;
isolation & purification
;
Glucosides
;
analysis
;
isolation & purification
;
Phenols
;
analysis
;
isolation & purification
;
Phenylethyl Alcohol
;
analogs & derivatives
;
analysis
;
isolation & purification
;
Rhodiola
;
chemistry
8.Phenolic constituents from Oplopanax horridus.
Wei-Hua HUANG ; Wei LUO ; Chong-Zhi WANG ; Chun-Su YUAN ; Ming-Kun NIE ; Shu-Yun SHI ; Hong-Hao ZHOU ; Dong-Sheng OUYANG
China Journal of Chinese Materia Medica 2014;39(10):1852-1857
The chemical constituents were isolated and purified by various chromatographic techniques indluding silica gel, reverse phase silica gel, sephadex LH-20 and pre-HPLC and identified by their physicochemical properties and spectral data. Sixteen phenolic compounds had been isolated and n-butanol extracts which were fractionated from the ethanol extract of Oplopanax horridus roots bark. Their structures were identified as below, including 7 phenylpropanoid compounds, ferulic acid (1), 3-acetylcaffeic acid (2), caffeic acid (3), homovanillyl alcohol 4-O-beta-D-glucopyranoside (4), 3-hydroxyphenethyl alcohol 4-O-beta-D-glucopyranoside (5), 3, 5-dimethoxycinnamyl alcohol 4-O-beta-D-glucopyranoside (6), and 3-dimethoxycinnamyl alcohol 4-O-beta-D-glucopyranoside (7). Three coumarins, scopoletin (8), esculetin (9) and 3'-angeloyl-4'-acetyl-cis-knellactone (10). And 6 lignan compounds, (+)-isolaricires-inol-9'-O-beta-D-glucopyranoside (11), 3, 3'-dimethoxy-4, 9, 9'-trihydroxy-4', 7-epoxy-5', 8-lignan-4, 9-bis-O-beta-D-glucopyranoside (12), (+)-5, 5'-dimethoxylariciresinol 4'-O-beta-D-glucopyranoside (13), (-)-5,5'-dimethoxylariciresinol 4'-O-beta-D-glucopyranoside (14), (-)-pinoresinol 4'-O-beta-D-glucopyranoside (15), and (+)-5, 5'-dimethoxylariciresinol 9'-O-beta-D-glucopyranoside (16). All compounds were isolated and identified for the first time from this plant All the constituents except compounds 4, 6, 12 and 13 were obtained for the first time from the genus Oplopanax.
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Oplopanax
;
chemistry
;
Phenols
;
chemistry
;
isolation & purification
;
Spectrometry, Mass, Electrospray Ionization
9.Phenolic compounds in branches of Tamarix rasissima.
Juan LI ; Wei-Qi LI ; Ping ZHENG ; Rui WANG ; Jian-Qiang YU ; Jian-Hong YANG ; Yao YAO
China Journal of Chinese Materia Medica 2014;39(11):2047-2050
To study the chemical constituents of the branches of Tamarix rasissima, repeated silica gel column chromatography, Sephadex LH-20 chromatography and recrystallization were applied for chemical constituents isolation and purification. Ten phenolic compounds were isolated from the n-BuOH fraction and their structures were elucidated by physical properties and spectra analysis such as UV, ESI-MS and NMR as monodecarboxyellagic acid (1), ellagic acid (2), 3, 3'-di-O-methylellagic acid (3), 3, 3'-di-O-methylellagic acid-4-O-beta-D-glucopyranoside (4), 3, 3'-di-O-methylellagic acid-4'-O-alpha-D-arabinfuranoside (5), ferulic acid (6), isoferulic acid (7), caffeic acid (8), 4-O-acetyl-caffeic acid (9), and 4-methyl-1, 2-benzenediol (10). All compounds except for isoferulic acid were isolated firstly from this plant except for isoferulic acid, and compounds 5, 9 and 10 were obtained from Tamarix genus for the first time.
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Phenols
;
chemistry
;
isolation & purification
;
Spectrometry, Mass, Electrospray Ionization
;
Tamaricaceae
;
chemistry
10.Caffeoyl phenylethanoid glycosides from Callicarpa kwangtungensis.
Xiao HU ; Li LI ; Yi-Fang YANG ; Chun-Yue HUANG ; Guang-Lei HUANG
China Journal of Chinese Materia Medica 2014;39(9):1630-1634
Phytochemical investigation on the EtOH extract from the aerial part of Callicarpa kwangtungensis led to the isolation and characterization of 10 caffeoyl phenylethanoid glycosides, 2'-acetylacteoside (1), tubuloside E (2), acteoside (3), tubuloside B (4), isoacteoside (5), alyssonoside (6), 2'-acetylforsythoside B (7), brandioside (8), forsythoside B (9), and poliumoside (10). Compound 4 was isolated from the plants of Verbenaceae,and 6 was obtained from the Callicarpa genus, for the first time, while compounds 1, 2, 5 and 7 were firstly reported from the plant.
Caffeic Acids
;
chemistry
;
isolation & purification
;
Catechols
;
chemistry
;
isolation & purification
;
Chromatography, High Pressure Liquid
;
Ethanol
;
chemistry
;
Glucosides
;
chemistry
;
isolation & purification
;
Glycosides
;
chemistry
;
isolation & purification
;
Phenols
;
chemistry
;
isolation & purification
;
Verbenaceae
;
chemistry

Result Analysis
Print
Save
E-mail