1.Expression of Glutathione Peroxidases and Its Effect on Clinical Prognosis in Glioma Patients.
Xiao-Mei REN ; Li ZHANG ; Bao XIN ; Wen-Wen QIAN ; Zeng-Run XIA ; Meng QI ; Xiao-Ping DU ; Chuan-Dao SHI ; Qi-Ling LIU ; Rong-Qiang ZHANG
Acta Academiae Medicinae Sinicae 2022;44(2):276-285
Objective To investigate the relationship between the expression of glutathione peroxidase(GPX)genes and the clinical prognosis in glioma patients,and to construct and evaluate the model for predicting the prognosis of glioma. Methods The clinical information and GPX expression of 663 patients,including 153 patients of glioblastoma(GBM)and 510 patients of low-grade glioma(LGG),were obtained from The Cancer Genome Atlas(TCGA)database.The relationship between GPX expression and patient survival was analyzed.The key GPX affecting the prognosis of glioma was screened out by single- and multi-factor Cox's proportional-hazards regression models and validated by least absolute shrinkage and selection operator(Lasso)regression.Finally,we constructed the model for predicting the prognosis of glioma with the screening results and then used concordance index and calibration curve respectively to evaluate the discrimination and calibration of model. Results Compared with those in the control group,the expression levels of GPX1,GPX3,GPX4,GPX7,and GPX8 were up-regulated in glioma patients(all P<0.001).Moreover,the expression levels of other GPX except GPX3 were higher in GBM patients than in LGG patients(all P<0.001).The Kaplan-Meier curves showed that the progression-free survival of GBM with high expression of GPX1(P=0.013)and GPX4(P=0.040),as well as the overall survival,disease-specific survival,and progression-free survival of LGG with high expression of GPX1,GPX7,and GPX8,was shortened(all P<0.001).GPX7 and GPX8 were screened out as the key factors affecting the prognosis of LGG.The results were further used to construct a nomogram model,which suggested GPX7 was the most important variable.The concordance index of the model was 0.843(95%CI=0.809-0.853),and the calibration curve showed that the predicted and actual results had good consistency. Conclusion GPX7 is an independent risk factor affecting the prognosis of LGG,and the nomogram model constructed with it can be used to predict the survival rate of LGG.
Brain Neoplasms
;
Glioblastoma
;
Glioma/diagnosis*
;
Glutathione Peroxidase/metabolism*
;
Humans
;
Peroxidases
;
Prognosis
;
Proportional Hazards Models
2.Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7.
Hyung Seo HWANG ; Joong Hyun SHIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):203-209
Caesalpinia sappan L., belonging to the family Leguminosae, is a medicinal plant that is distributed in Southeast Asia. The dried heartwood of this plant is used as a traditional ingredient of food, red dyes, and folk medicines in the treatment of diarrhea, dysentery, tuberculosis, skin infections, and inflammation. Brazilin is the major active compound, which has exhibited various pharmacological effects, including anti-platelet activity, anti-hepatotoxicity, induction of immunological tolerance, and anti-inflammatory and antioxidant activities. The present study aimed to evaluate the antioxidant activity and expression of antioxidant enzymes of C. sappan L. extract and its major compound, brazilin, in human epidermal keratinocytes exposed to UVA irradiation. Our results indicated that C. sappan L. extract reduced UVA-induced HO production via GPX7 activation. Moreover, brazilin exhibited antioxidant effects that were similar to those of C. sappan L. via glutathione peroxidase 7 (GPX7), suggesting that C. sappan L. extract and its natural compound represent potential treatments for oxidative stress-induced photoaging of skin.
Antioxidants
;
pharmacology
;
Benzopyrans
;
pharmacology
;
Caesalpinia
;
chemistry
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
Keratinocytes
;
cytology
;
drug effects
;
enzymology
;
radiation effects
;
Oxidative Stress
;
drug effects
;
radiation effects
;
Peroxidases
;
genetics
;
metabolism
;
Plant Extracts
;
pharmacology
;
Protective Agents
;
pharmacology
;
Ultraviolet Rays
3.Enhancement of Coprinus cinereus peroxidase in Pichia pastoris by co-expression chaperone PDI and Ero1.
Fei CHEN ; Meirong HU ; Xianzhang JIANG ; Yong TAO ; Jianzhong HUANG
Chinese Journal of Biotechnology 2015;31(12):1682-1689
The 1,095 bp gene encoding peroxidase from Coprinus cinereus was synthesized and integrated into the genome of Pichia pastoris with a highly inducible alcohol oxidase. The recombinant CiP (rCiP) fused with the a-mating factor per-pro leader sequence derived from Saccharomyces cerevisiae was secreted into the culture medium and identified as the target protein by mass spectrometry, confirming that a C. cinereus peroxidase (CiP) was successfully expressed in P. pastoris. The endoplasmic reticulum oxidoreductase 1 (Ero1) and protein disulfide isomerase (PDI) were co-expressed with rCiP separately and simultaneously. Compared with the wild type, overexpression of PDI and Erol-PDI increaseed Cip activity in 2.43 and 2.6 fold and their activity reached 316 U/mL and 340 U/mL respectively. The strains co-expressed with Erol-PDI was used to high density fermentation, and their activity reached 3,379 U/mL, which was higher than previously reported of 1,200 U/mL.
Coprinus
;
enzymology
;
Culture Media
;
Cytoplasm
;
Fermentation
;
Glycoproteins
;
metabolism
;
Mass Spectrometry
;
Mating Factor
;
Oxidoreductases Acting on Sulfur Group Donors
;
metabolism
;
Peptides
;
Peroxidases
;
biosynthesis
;
Pichia
;
metabolism
;
Protein Disulfide-Isomerases
;
metabolism
;
Protein Folding
;
Saccharomyces cerevisiae
;
Saccharomyces cerevisiae Proteins
;
metabolism
4.Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring.
Wu-lin CAO ; Xiang-cai MENG ; Wei MA
China Journal of Chinese Materia Medica 2015;40(18):3553-3559
In order to search for a new pathway to improve the yield of ginseng through growing at the full sun shine accompanied by salicylic acid (SA), the net photosynthetic rate (P(n)), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), malondialdehyde (MDA) in Panax ginseng leaves, and the content of ginsenosides in roots were compared under various concentrations of SA and full sun shine with the traditional shade shed. Under the full sun shine, 0.05, 0.2 mmol x L(-1) SA increased net photosynthetic rate to a great extent. Under the cloudy day, the average net photosynthetic rate increased by 127.8% and 155.0% over the traditional shade shed, 13.9% and 27.5% over the treatment without SA respectively; under the clear day, 23.5% and 30.4% over the traditional shade shed, 8.6% and 14.6% over the treatment without SA, particularly obvious in the morning and late afternoon. With such concentration, SA increased activities of SOD, CAT, POD, and decreased the contents of the MDA. This difference resulted from different light intensity, rise of light saturation point, and fall of compensation point. Full sun shine decreased ginsenosides contents, but with SA, the ginsenosides regained, the content of Rg1 and Re, Rb1, total six types of ginsenosides in SA 0.2 mmol x L(-1) group were higher than those in the control group (P < 0.05) and other groups. The application of 0.2 mmol x L(-1) SA under full sun shine during a short time has little threat to the P. ginseng in spring, and could enhance the resistance to the adversity, which would improve the yield of ginseng heavily.
Catalase
;
analysis
;
metabolism
;
Ginsenosides
;
analysis
;
metabolism
;
Light
;
Malondialdehyde
;
analysis
;
metabolism
;
Panax
;
chemistry
;
drug effects
;
metabolism
;
radiation effects
;
Peroxidases
;
analysis
;
metabolism
;
Photosynthesis
;
drug effects
;
Plant Proteins
;
analysis
;
metabolism
;
Salicylic Acid
;
pharmacology
;
Seasons
;
Superoxide Dismutase
;
analysis
;
metabolism
5.Involvement of the receptor component protein in the regulation of vascular peroxidase-1 expression induced by calcitonin gene-related peptide and angiotensin II in vascular smooth muscle cell.
Yan-Mei LIU ; Hong-Yan PENG ; Feng GUO ; Hai-Yan QUAN ; Jing-Fei LUO ; Xu-Ping QIN
Acta Physiologica Sinica 2015;67(2):193-200
Angiotensin II (Ang II) and calcitonin gene-related peptide (CGRP) play important roles in vascular injury and protection. In order to determine the role of CGRP receptor component protein (RCP) in signal transduction whereby CGRP and Ang II mediate the expression of vascular peroxidase-1 (VPO1) in vascular smooth muscle cell (VSMC), mouse derived A10 vascular smooth muscle cell line (A10VSMC) was cultured with CGRP or/and Ang II in vitro. RCP-specific small interference RNA (siRNA-RCP) was used to silence oligonucleotide sequence. Western blot and RT-PCR were used to determine the protein and mRNA expressions of RCP and VPO1, respectively. The results showed that the expressions of RCP and VPO1 were increased in the presence of CGRP or Ang II in the quiescent A10VSMC. But the protein expressions of RCP and VPO1 induced by Ang II were decreased by pretreatment of CGRP (P < 0.05). The expressions of VPO1 were decreased in all the groups treated with siRNA-RCP, compared with those of wide-type counterparts. Meanwhile, the expression of VPO1 was significantly induced by CGRP but not Ang II in the siRNA-RCP treated A10VSMCs. Ang II in combination with CGRP increased the protein expression of VPO1 in the siRNA-RCP-transfected cells, compared with Ang II alone, and this effect could be abolished by catalase. The results suggest that RCP may play an important role in the integration of signal transduction whereby CGRP and Ang II receptors jointly regulate VPO1 expression in VSMC.
Angiotensin II
;
pharmacology
;
Animals
;
Calcitonin Gene-Related Peptide
;
pharmacology
;
Mice
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
metabolism
;
Peroxidases
;
metabolism
;
RNA, Small Interfering
;
Signal Transduction
6.Effects of storage time on quality of Desmodium styracifolium seeds.
Quan YANG ; Xiao-min TANG ; Hai-yun PAN ; Ling-feng MEI ; Chun-rong ZHANG ; Xuan-xuan CHENG ; Lu-qi HUANG
China Journal of Chinese Materia Medica 2015;40(20):3953-3957
The dynamic changes of germination percentage, germination potential, thousand-seed weight, antioxidase activity in Desmodium styracifolium seeds with different storage time were tested, and electrical conductivity, contents of soluble sugar, soluble protein, starch in seed leach liquor were also determined in order to reveal the mechanism of seed deterioration. The results as the following. (1) The germination percentage, germination potential and thousand-seed weight of D. styracifolium seeds declined, while the seed coat color darkened with the extension of storage time. (2) The activities of superoxide dismutase (SOD) and peroxidase (POD) decreased with the prolongation of storage period. The SOD activity declined fastest in 1,095-1,185 d of storage, while the POD activity declined significantly in 365-395 d of storage. (3) The electrical conductivity and the contents of soluble sugar, starch in seed leach liquor increased, while the content of soluble protein declined with the extension of storage time. (4) Correlation analysis indicated that the germination percentage, germination potential and thousand-seed weight of D. styracifolium seeds have a significantly positive correlation with SOD and POD activity, while have a significantly negative correlation with the electrical conductivity, contents of soluble sugar and starch. It can be concluded that during the storage of D. styracifolium seeds, physiological and biochemical changes including decrease in antioxidase activity, rise in electrical conductivity, degradation effluent of soluble sugar and starch, degradation of soluble protein were the main factors leading to the seed deterioration.
Color
;
Fabaceae
;
chemistry
;
enzymology
;
growth & development
;
metabolism
;
Germination
;
Peroxidases
;
metabolism
;
Plant Proteins
;
metabolism
;
Seeds
;
chemistry
;
enzymology
;
growth & development
;
metabolism
;
Starch
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Time Factors
7.Light quality regulation of growth and endogenous IAA metabolism of Ganoderma lucidum mycelium.
Xi-Ling MEI ; Zhou ZHAO ; Xiang-Dong CHEN ; Jin LAN
China Journal of Chinese Materia Medica 2013;38(12):1887-1892
To study the effect and mechanism of the light quality acting on Ganoderma lucidum, and provide a theoretical basis for G. lucidum mycelium cultivation, we focused on growth and endogenous IAA metabolism of G. lucidum mycelium under different light-emitting diode (LED) condition. The growth index, endogenous levels of IAA and Enzymes related to IAA metabolism and Polysaccharides content were investigated in different growth periods. Results showed that blue light irradiation was the best from the viewpoint of steady growth and polysaccharides accumulation, red light irradiation improved endogenous IAA level and promoted growth of mycelium in early stage of cultivation, green light irradiation decreased growth rate and fresh weight of mycelium, but increased drying rate. Enzymes related to IAA metabolism also significantly influenced by light quality. The activity of indole acetic acid oxidase (IAAO), peroxidase (POD) and tryptophan synthetase with blue light irradiation were showed high level in early time, but decreased later, and the IAA content was consistently at lower level than that in other treatments, while mycelium irradiated with yellow light showed the highest activity of both IAAO and tryptophan synthetase, and medium level of IAA content. In conclusion, the light quality affects growth and regulation of the level of endogenous IAA of G. lucidum mycelium.
Fungal Polysaccharides
;
analysis
;
Indoleacetic Acids
;
metabolism
;
Light
;
Peroxidases
;
metabolism
;
Reishi
;
growth & development
;
metabolism
8.Recombinant expression, purification and characterization of a novel DyP-type peroxidase in Escherichia coli.
Liqun WANG ; Alan K CHANG ; Wenjie YUAN ; Fengwu BAI
Chinese Journal of Biotechnology 2013;29(6):772-784
Dye-decolorizing peroxidase (DyP-type peroxidase) represents a group of heme-containing peroxidases able to decolour various organic dyes, most of which are xenobiotics. To identify and characterize a new DyP-type peroxidase (ZmDyP) from Zymomonas mobilis ZM4 (ATCC 31821), ZmDyP was amplified from the genomic DNA of Z. mobilis by PCR, and cloned into the Escherichia coli expression vector pET-21b(+). Alignment of the amino acid sequence of ZmDyP with other members of the DyP-type peroxidases revealed the presence of the active site conserved residues D149, R239, T254, F256 as well as the typical GXXDG motif, indicating that ZmDyP is a new member of the Dyp-type peroxidase family. pET-21b(+) containing ZmDyP gene was expressed in E. coli by IPTG induction. The expressed enzyme was purified by Ni-Chelating chromatography. SDS-PAGE analysis of the purified enzyme revealed a molecular weight of 36 kDa, whereas activity staining gave a molecular weight of 108 kDa, suggesting that the enzyme could be a trimer. In addition, ZmDyP is a heme-containing enzyme as shown by a typical heme absorption peak of Soret band. Moreover, ZmDyP showed high catalytic efficiency with 2, 2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) as a substrate. These results enrich the pool of DyP-type peroxidases and lay a foundation for further studies.
Amino Acid Sequence
;
Catalysis
;
Coloring Agents
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Peroxidases
;
biosynthesis
;
genetics
;
isolation & purification
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
isolation & purification
;
Zymomonas
;
enzymology
9.Enhancement of functional expression of wheat peroxidase WP1 in prokaryotic system by co-transforming with hemA and hemL of Esherichia coli.
Chao ZHANG ; Liwei SHAN ; Shuaikun SU ; Yanni NAN ; Zhongyu GUO ; Sanhong FAN
Chinese Journal of Biotechnology 2012;28(7):865-876
Wheat grain peroxidase 1 (WP1) belonged to class III plant peroxidase with cofactor heme, which not only has antifungal activity, but also influences the processing quality of flour. In order to enhance functional expression of WP1 in prokaryotic system by increasing endogenous heme synthesis, we constructed a recombinant plasmid pACYC-A-L containing hemA and hemL of Esherichia coli. Then, we co-transformed it into host strain T7 Express with secretive expression vector (pMAL-p4x-WP1) or non-secretive expression vector (pET21a-MBP-WP1), respectively. The MBP-WP1 fusion protein was further purified by amylose affinity chromatography and its peroxidase activity was assayed using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate. At 12 h after induction at 28 degree, the extracellular 5-aminolevulinic acid (5-ALA) production of T7 Express/pACYC-A-L was up to 146.73 mg/L, simultaneously the extracellular porphrins also increased dramatically. The peroxidase activity of functional MBP-WP1 obtained from T7 Express/ (pACYC-A-L + pMAL-p4x-WP1) was 14.6-folds of that purified from T7 Express/ pET21a-MBP-WP1. This study not only successfully enhanced functional expression of wheat peroxidase 1 in Esherichia coli, but also provided beneficial references for other important proteins with cofactor heme.
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Heme
;
biosynthesis
;
genetics
;
Peroxidases
;
biosynthesis
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Transformation, Genetic
10.Effect of water deficit on gene expression of enzymes related with hydrogen peroxide detoxification system in Scutellaria baicalensis.
Chong WU ; Shuangshuang QIN ; Yuan YUAN ; Ping CHEN ; Shuifang LIN
China Journal of Chinese Materia Medica 2012;37(2):186-188
OBJECTIVETo analysis the effects of water deficit on the transcript level of SOD, APX, DHAR and MDHAR genes in Scutellaria baicalensis.
METHODThree-month-old S. baicalensis was in glasshouse under water deficit stress, and the transcript level of SOD, APX, DHAR and MDHAR genes were analysis utilized semi-quantitative RT-PCR.
RESULTCompared with the control group, a significant decline of the transcriptional level of APX gene was observed at 70 days after water deficit. The transcript level of DHAR gene was reduced at 30 and 50 days after water deficit. And MDHARI gene was significant declined at 50 days.
CONCLUSIONAsA which is an important antioxidant plays a major role in hydrogen peroxide clear system under water deficit, and maybe have an antagonistic effect to the accumulation of baicalein.
Ascorbate Peroxidases ; genetics ; metabolism ; Ascorbic Acid ; metabolism ; Gene Expression Regulation, Enzymologic ; drug effects ; Gene Expression Regulation, Plant ; drug effects ; Hydrogen Peroxide ; metabolism ; NADH, NADPH Oxidoreductases ; genetics ; metabolism ; Oxidoreductases ; genetics ; metabolism ; Plant Proteins ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Scutellaria baicalensis ; enzymology ; genetics ; metabolism ; Superoxide Dismutase ; genetics ; metabolism ; Time Factors ; Water ; metabolism ; pharmacology

Result Analysis
Print
Save
E-mail