1.Role of Regulatory Cells in Oral Tolerance.
Marcin WAWRZYNIAK ; Liam O'MAHONY ; Mübeccel AKDIS
Allergy, Asthma & Immunology Research 2017;9(2):107-115
The immune system is continuously exposed to great amounts of different antigens from both food and intestinal microbes. Immune tolerance to these antigens is very important for intestinal and systemic immune homeostasis. Oral tolerance is a specific type of peripheral tolerance induced by exposure to antigen via the oral route. Investigations on the role of intestinal immune system in preventing hypersensitivity reactions to innocuous dietary and microbial antigens have been intensively performed during the last 2 decades. In this review article, we discuss how food allergens are recognized by the intestinal immune system and draw attention to the role of regulatory T (Treg) and B (Breg) cells in the establishment of oral tolerance and tolerogenic features of intestinal dendritic cells. We also emphasize the potential role of tonsils in oral tolerance induction because of their anatomical location, cellular composition, and possible usage to develop novel ways of specific immunotherapy for the treatment of allergic diseases.
Allergens
;
Dendritic Cells
;
Food Hypersensitivity
;
Homeostasis
;
Hypersensitivity
;
Immune System
;
Immune Tolerance
;
Immunotherapy
;
Palatine Tonsil
;
Peripheral Tolerance
2.Emerging Roles of Lymphatic Vasculature in Immunity.
Immune Network 2017;17(1):68-76
The lymphatic vasculature has been regarded as a passive conduit for interstitial fluid and responsible for the absorption of macromolecules such as proteins or lipids and transport of nutrients from food. However, emerging data show that the lymphatic vasculature system plays an important role in immune modulation. One of its major roles is to coordinate antigen transport and immune-cell trafficking from peripheral tissues to secondary lymphoid organs, lymph nodes. This perspective was recently updated with the notion that the interaction between lymphatic endothelial cells and leukocytes controls the immune-cell migration and immune responses by regulating lymphatic flow and various secreted molecules such as chemokines and cytokines. In this review, we introduce the lymphatic vasculature networks and genetic transgenic models for research on the lymphatic vasculature system. Next, we discuss the contribution of lymphatic endothelial cells to the control of immune-cell trafficking and to maintenance of peripheral tolerance. Finally, the physiological roles and features of the lymphatic vasculature system are further discussed regarding inflammation-induced lymphangiogenesis in a pathological condition, especially in mucosal tissues such as the gastrointestinal tract and respiratory tract.
Absorption
;
Chemokines
;
Cytokines
;
Endothelial Cells
;
Endothelium
;
Extracellular Fluid
;
Gastrointestinal Tract
;
Leukocytes
;
Lymph Nodes
;
Lymphangiogenesis
;
Mucous Membrane
;
Peripheral Tolerance
;
Respiratory System
3.Immunomodulatory Function of Mesenchymal Stem Cells for Rheumatoid Arthritis.
Journal of Rheumatic Diseases 2016;23(5):279-287
Developments in our comprehension of the autoimmune and inflammation mechanisms in rheumatoid arthritis (RA) have produced targeted therapies that block aberrant immune cells and cytokine networks, and improved treatment of RA patients considerably. Nevertheless, limitations of these treatments include incomplete treatment response, adverse effects requiring drug withdrawal, and refractory cases. Hence, many researchers have redirected efforts towards investigation of other biological aspects of RA, including the mechanisms driving joint tissue repair and balanced immune regulation. This investigation focuses on mesenchymal stem cell (MSC) research, with the ultimate goal of developing interventions for immune modulation and repair of damaged joints. MSCs are multipotent cells capable of differentiating into mesodermal lineage cells. These cells have also attracted interest for their anti-inflammatory and immunomodulatory capacities. They have many distinctive immunological properties, inhibiting the proliferation and production of cytokines by T, B, natural killer, and dendritic cells. Indeed, MSCs have the capacity to regulate immunity-induced peripheral tolerance, suggesting they can be used as therapeutic tools in RA. This review discusses properties of MSCs, in vitro studies, animal studies, and clinical trials involving MSCs. Our review discusses the current knowledge of the mechanisms of MSC-mediated immunosuppression and potential therapeutic uses of MSCs in RA.
Animals
;
Arthritis, Rheumatoid*
;
Comprehension
;
Cytokines
;
Dendritic Cells
;
Humans
;
Immunosuppression
;
In Vitro Techniques
;
Inflammation
;
Joints
;
Mesenchymal Stromal Cells*
;
Mesoderm
;
Peripheral Tolerance
;
Therapeutic Uses
4.Moxibustion Improved Transcutaneous Oxygen Tension and Exercise Capacity in Lower Limbs of Peripheral Arterial Disease.
Lei WANG ; Zhen-zhen GAO ; Wang ZUN ; Hua-ping PAN
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(2):179-182
OBJECTIVETo observe the effects of moxibustion and treadmill exercise on transcutaneous oxygen tension and exercise capacity in lower limbs of peripheral arterial disease (PAD).
METHODSTotally 58 mild-to-moderate PAD patients were assigned to the control group (18 cases), the moxibustion group (20 cases), and the treadmill exercise group (20 cases) by random digit table. Patients in the control group received conventional drug therapy for 12 weeks. Patients in the moxibustion group and the treadmill exercise group additionally received moxibustion [at Zusanli (ST36), Sanyinjiao (SP6), Yongquan (KI1)] and treadmill exercise respectively, once per day, 5 times per week for 12 weeks in total. Ankle-Brachial Index (ABI) , transcutaneous oxygen tension (TcPO₂), 6-min walking test (6MWT), and walking impairment questionnaire (WIQ) were assessed before and after treatment.
RESULTSCompared with the control group and the same group before treatment, there was no statistical difference in ABI in the moxibustion group and the treadmill exercise group (P > 0.05). But TcPO₂, 6MWT, and WIQ were obviously elevated (P < 0.01). Besides, 6MWT and WIQ assessment of the treadmill exercise group were better than that of the moxibustion group (P < 0.01) after intervention.
CONCLUSIONMoxibustion and treadmill exercise could improve the exercise capacity and TcPO₂of lower limbers in PAD patients.
Exercise Test ; Exercise Therapy ; Exercise Tolerance ; Humans ; Lower Extremity ; physiopathology ; Moxibustion ; Oximetry ; Oxygen ; blood ; Peripheral Arterial Disease ; therapy ; Surveys and Questionnaires ; Walking
5.Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy.
Immune Network 2016;16(5):281-285
CD4⁺ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.
Adoptive Transfer
;
Autoimmune Diseases
;
Autoimmunity
;
Glucose
;
Homeostasis
;
Immunosuppression
;
Immunotherapy*
;
Peripheral Tolerance
;
Pluripotent Stem Cells
;
Stem Cells
;
T-Lymphocytes
;
T-Lymphocytes, Regulatory*
6.Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy.
Immune Network 2016;16(5):281-285
CD4⁺ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.
Adoptive Transfer
;
Autoimmune Diseases
;
Autoimmunity
;
Glucose
;
Homeostasis
;
Immunosuppression
;
Immunotherapy*
;
Peripheral Tolerance
;
Pluripotent Stem Cells
;
Stem Cells
;
T-Lymphocytes
;
T-Lymphocytes, Regulatory*
7.Germinal Center Formation Controlled by Balancing Between Follicular Helper T Cells and Follicular Regulatory T Cells.
Hong Jai PARK ; Do Hyun KIM ; Je Min CHOI
Hanyang Medical Reviews 2013;33(1):10-16
Follicular helper T cells (Tfh) play a significant role in providing T cell help to B cells during the germinal center reaction, where somatic hypermutation, affinity maturation, isotype class switching, and the differentiation of memory B cells and long-lived plasma cells occur. Antigen-specific T cells with IL-6 and IL-21 upregulate CXCR5, which is required for the migration of T cells into B cell follicles, where these T cells mature into Tfh. The surface markers including PD-1, ICOS, and CD40L play a significant role in providing T cell help to B cells. The upregulation of transcription factor Bcl-6 induces the expression of CXCR5, which is an important factor for Tfh differentiation, by inhibiting the expression of other lineage-specific transcription factors such as T-bet, GATA3, and RORgammat. Surprisingly, recent evidence suggests that CD4 T cells already committed to Th1, Th2, and Th17 cells obtain flexibility in their differentiation programs by downregulating T-bet, GATA3, and RORgammat, upregulating Bcl-6 and thus convert into Tfh. Limiting the numbers of Tfh within germinal centers is important in the regulation of the autoantibody production that is central to autoimmune diseases. Recently, it was revealed that the germinal center reaction and the size of the Tfh population are also regulated by thymus-derived follicular regulatory T cells (Tfr) expressing CXCR5 and Foxp3. Dysregulation of Tfh appears to be a pathogenic cause of autoimmune disease suggesting that tight regulation of Tfh and germinal center reaction by Tfr is essential for maintaining immune tolerance. Therefore, the balance between Tfh and Tfr appears to be a critical peripheral tolerance mechanism that can inhibit autoimmune disorders.
Autoimmune Diseases
;
Autoimmunity
;
B-Lymphocytes
;
CD40 Ligand
;
Germinal Center
;
Immune Tolerance
;
Immunoglobulin Class Switching
;
Interleukin-6
;
Interleukins
;
Memory
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
Peripheral Tolerance
;
Plasma Cells
;
Pliability
;
T-Lymphocytes
;
T-Lymphocytes, Helper-Inducer
;
T-Lymphocytes, Regulatory
;
Th17 Cells
;
Transcription Factors
;
Up-Regulation
8.Novel Pharmacologic Therapies in the Treatment of Systemic Lupus Erythematosus.
Hanyang Medical Reviews 2012;32(2):83-93
Systemic lupus erythematosus (lupus) is an autoimmune disease that affects primarily women, especially those of reproductive age. Lupus is a prototypic organ non-specific autoimmune disease that may affect any organ in the body resulting in displaying a broad spectrum of clinical and immunological manifestations. The pathogenesis of lupus involves a complex interplay between genetic and environmental factors and the adaptive and innate immune systems. Defects in central and peripheral tolerance, increased antigenic load, excess T-cell help, B cell hyperactivity, autoantibody production and cytokine imbalance, ultimately lead to immune-complex formation and complement activation causing immunologically mediated organ damage, culminating in premature death. There is an urgent need for the development of novel agents since many patients are refractory to traditional agents. However, there are two hurdles that make development of new therapeutic agents difficult. First, we do not understand the whole picture of the pathogenesis of lupus because of its complex and multi-systemic presentation. Secondly, lupus lacks a reliable and sensitive biomarker for measuring disease activity, and a standardized method for defining response to therapy. Nevertheless, great advances have been made during the past 10 years because of the great efforts of basic researchers and clinicians on elucidating the cause of the disease, and participation of pharmaceutical and biotechnical companies in the development of novel agents. My goal was to evaluate the efficacy and safety of novel pharmaceutical agents by a comprehensive review of open-label and randomized clinical trials conducted in patients with lupus.
Autoimmune Diseases
;
Biological Agents
;
Complement Activation
;
Female
;
Humans
;
Immune System
;
Lupus Erythematosus, Systemic
;
Mortality, Premature
;
Peripheral Tolerance
;
Pharmaceutical Services
;
T-Lymphocytes
9.The Role of MicroRNAs in Regulatory T Cells and in the Immune Response.
Immune Network 2011;11(1):11-41
The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.
3' Untranslated Regions
;
Adaptive Immunity
;
Autoimmune Diseases
;
Cardiovascular Diseases
;
Gene Expression
;
Homeostasis
;
Immune System Diseases
;
MicroRNAs
;
Peripheral Tolerance
;
Prognosis
;
Repression, Psychology
;
RNA, Messenger
;
RNA, Untranslated
;
T-Lymphocytes, Regulatory
10.Deficiency of Foxp3+ Regulatory T Cells Exacerbates Autoimmune Arthritis by Altering the Synovial Proportions of CD4+ T Cells and Dendritic Cells.
Eunkyeong JANG ; Mi La CHO ; Hye Joa OH ; Jeehee YOUN
Immune Network 2011;11(5):299-306
BACKGROUND: CD4+Fop3+ regulatory T cells (Tregs) are needed to maintain peripheral tolerance, but their role in the development of autoimmune arthritis is still debated. The present study was undertaken to investigate the mechanism by which Tregs influence autoimmune arthritis, using a mouse model entitled K/BxN. METHODS: We generated Treg-deficient K/BxNsf mice by congenically crossing K/BxN mice with Foxp3 mutant scurfy mice. The arthritic symptoms of the mice were clinically and histopathologically examined. The proportions and activation of CD4+ T cells and/or dendritic cells were assessed in the spleens, draining lymph nodes and synovial tissue of these mice. RESULTS: K/BxNsf mice exhibited earlier onset and more aggressive progression of arthritis than their K/BxN littermates. In particular, bone destruction associated with the influx of numerous RANKL+ cells into synovia was very prominent. They also contained more memory phenotype CD4+ T cells, more Th1 and Th2 cells, and fewer Th17 cells than their control counterparts. Plasmacytoid dendritic cells expressing high levels of CD86 and CD40 were elevated in the K/BxNsf synovia. CONCLUSION: We conclude that Tregs oppose the progression of arthritis by inhibiting the development of RANKL+ cells, homeostatically proliferating CD4+ T cells, Th1, Th2 and mature plasmacytoid dendritic cells, and by inhibiting their influx into joints.
Animals
;
Arthritis
;
Dendritic Cells
;
Joints
;
Lymph Nodes
;
Memory
;
Mice
;
Peripheral Tolerance
;
Phenotype
;
Spleen
;
Synovial Fluid
;
Synovial Membrane
;
T-Lymphocytes
;
T-Lymphocytes, Regulatory
;
Th17 Cells
;
Th2 Cells

Result Analysis
Print
Save
E-mail