1.Comparison of active components in different parts of Perilla frutescens and its pharmacological effects.
Liang-Qi ZHANG ; Wen-Jiao LI ; Mei-Feng XIAO
China Journal of Chinese Materia Medica 2023;48(24):6551-6571
Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.
Perilla frutescens/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Fruit/chemistry*
;
Oils, Volatile/analysis*
;
Plant Leaves/chemistry*
2.Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens.
Yali ZHOU ; Xusheng HUANG ; Yueru HAO ; Guiping CAI ; Xianfei SHI ; Runzhi LI ; Jiping WANG
Chinese Journal of Biotechnology 2022;38(8):3014-3028
Perilla (Perilla frutescens L.) is an important edible-medicinal oil crop, with its seed containing 46%-58% oil. Of perilla seed oil, α-linolenic acid (C18:3) accounts for more than 60%. Lysophosphatidic acid acyltransferase (LPAT) is one of the key enzymes responsible for triacylglycerol assembly in plant seeds, controlling the metabolic flow from lysophosphatidic acid to phosphatidic acid. In this study, the LPAT2 gene from the developing seeds of perilla was cloned and designated as PfLPAT2. The expression profile of PfLPAT2 gene was examined in various tissues and different seed development stages of perilla (10, 20, 30, and 40 days after flowering, DAF) by quantitative real-time PCR (qRT-PCR). In order to detect the subcellular localization of PfLPAT2 protein, a fusion expression vector containing PfLPAT2 and GFP was constructed and transformed into Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. In order to explore the enzymatic activity and biological function of PfLPAT2 protein, an E. coli expression vector, a yeast expression vector and a constitutive plant overexpression vector were constructed and transformed into an E. coli mutant SM2-1, a wild-type Saccharomyces cerevisiae strain INVSc1, and a common tobacco (Nicotiana tabacum, variety: Sumsun NN, SNN), respectively. The results showed that the PfLPAT2 open reading frame (ORF) sequence was 1 155 bp in length, encoding 384 amino acid residues. Functional structure domain prediction showed that PfLPAT2 protein has a typical conserved domain of lysophosphatidic acid acyltransferase. qRT-PCR analysis indicated that PfLPAT2 gene was expressed in all tissues tested, with the peak level in seed of 20 DAF of perilla. Subcellular localization prediction showed that PfLPAT2 protein is localized in cytoplasm. Functional complementation assay of PfLPAT2 in E. coli LPAAT mutant (SM2-1) showed that PfLPAT2 could restore the lipid biosynthesis of SM2-1 cell membrane and possess LPAT enzyme activity. The total oil content in the PfLPAT2 transgenic yeast was significantly increased, and the content of each fatty acid component changed compared with that of the non-transgenic control strain. Particularly, oleic acid (C18:1) in the transgenic yeast significantly increased, indicating that PfLPAT2 has a higher substrate preference for C18:1. Importantly, total fatty acid content in the transgenic tobacco leaves increased by about 0.42 times compared to that of the controls, with the C18:1 content doubled. The increased total oil content and the altered fatty acid composition in transgenic tobacco lines demonstrated that the heterologous expression of PfLPAT2 could promote host oil biosynthesis and the accumulation of health-promoting fatty acids (C18:1 and C18:3). This study will provide a theoretical basis and genetic elements for in-depth analysis of the molecular regulation mechanism of perilla oil, especially the synthesis of unsaturated fatty acids, which is beneficial to the genetic improvement of oil quality of oil crops.
Acyltransferases
;
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Fatty Acids
;
Perilla frutescens/metabolism*
;
Plant Oils
;
Plant Proteins/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Seeds/chemistry*
;
Tobacco/genetics*
3.Contents determination of eight phenolic compounds in Perilla frutescens leaves of different cultivation years and harvesting periods.
Yan-Jiao LUO ; Jia-Qi GUO ; Wei-Ping LI ; Yu YAO ; Chun-Mei WEN ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2021;46(3):567-574
A method was established for content determination of two kinds of phenolic acids, including rosmarinic acid)(RA) and caffeic acid(CA), and six kinds of flavonoids including scutellarein-7-O-diglucuronide(SDG), luteolin-7-O-diglucuronide(LDG), apigenin-7-O-diglucuronide(ADG), scutellarin-7-O-glucuronide(SG), luteolin-7-O-glucuronide(LG), and apigenin-7-O-glucuronide(AG) in Perilla frutescens leaves. The content of eight chemical components was measured based on ten P. frutescens germplasms of different chemotypes of volatile oil, different cultivated years, and different harvesting periods. The results showed that there was a great difference between the two kinds of constituents of different germplasms. The total content of the two phenolic acids was 2.24-34.44 mg·g~(-1), and the total content of the six flavonoids was 11.55-34.71 mg·g~(-1). Then according to content from most to least, the order of each component was RA(2.13-33.97 mg·g~(-1)), LDG(1.31-14.80 mg·g~(-1)), SG(1.97-8.45 mg·g~(-1)), ADG(2.68-7.60 mg·g~(-1)), SDG(1.16-5.87 mg·g~(-1)), LG(0.78-1.91 mg·g~(-1)), AG(0.56-1.00 mg·g~(-1)), and CA(0.11-0.68 mg·g~(-1)). The chemical contents of the 5 PA-type germplasms in 2017 were mostly higher than those in 2018 showing a large variation with the cultivation years. These contents of two kinds of phenolic acids of 9 germplasms fluctuated with the harvesting time. The content decreased before early flower spike(the 3~(rd) to 18~(th) in August) at first and began to increase in flowering and fruiting period(the 18~(th) in August to 2~(nd) in September). However, these contents had slowly decreasing trend after 2~(nd) in September till 17~(th) in the same month. Interestingly, the content raised again in the maturity of fruits. The variation tendency of contents in six kinds of flavonoids components was inconsistent in different germplasms with the variation of harvesting time. The content of flavonoids in part of germplasms was negatively correlated with the fluctuation of phenolic acids. There was no correlation between phenolic acids and chemical type of the volatile oil. This paper may provide a reference for the high-quality germplasm of P. frutescens cultivation.
Flavonoids
;
Oils, Volatile
;
Perilla frutescens
;
Phenols
;
Plant Leaves
4.Comparative analysis of chemical compositions of fruits of Perilla frutescens var. arguta and P. frutescens var. frutescens by pre-column derivatization with GC-MS.
Jia-Bao CHEN ; Qian WANG ; Lin-Lin QI ; Chun-Xiu WEN ; Lei WANG ; Yu-Guang ZHENG
China Journal of Chinese Materia Medica 2021;46(23):6185-6195
The present study compared the appearance and chemical composition of fruits of Perilla frutescens var. arguta(PFA) and P. frutescens var. frutescens(PFF). VHX-6000 3 D depth of field synthesis technology was applied for the appearance observation. The metabolites were qualitatively and quantitatively analyzed by pre-column derivatization combined with gas chromatography-mass spectrometry(GC-MS). Finally, cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least-squares discriminant analysis(OPLS-DA) were applied for exploring the differences in their chemical compositions. The results indicated that the size and color of PFA and PFF fruits were different. PFF fruits were significantly larger than PFA fruits. The surface color of PFA fruits was brown, while PFF fruits were in multiple colors, such as white, grayish-white, and brown. Amino acids, saccharides, organic acids, fatty acids, and phenolic acids were identified in PFA and PFF fruits. The results of CA, PCA, and OPLS-DA indicated significant differences in the content of components between PFA and PFF fruits. Three metabolites, including D-glucose, rosmarinic acid, and D-fructose, which were significantly higher in PFA fruits than in PFF fruits, were screened out as differential metabolites. Considering the regulation on the content of rosmarinic acid in Perillae Fructus in the Chinese Pharmacopoeia(2020 edition), the medicinal value of PFA fruits is higher than that of PFF. In conclusion, there are differences in appearance and chemical composition between PFA fruits and PFF fruits. These results are expected to provide fundamental data for specifying plant source and quality control of Perillae Fructus.
Fatty Acids
;
Fruit
;
Gas Chromatography-Mass Spectrometry
;
Perilla frutescens
;
Plant Extracts
5.Comparison of Salinity and Sodium Content by the Salinity Measurement Frequency of Soups of Childcare Centers Enrolled in the Center for Children's Food Service Management in Daegu
Korean Journal of Community Nutrition 2020;25(1):13-20
OBJECTIVES: This study examined the salinity of soups provided at childcare centers by measuring the salinity for three years and providing basic data for sodium reduction.METHODS: The soup salinity was measured using a Bluetooth salinity meter from January 2015 to December 2017 at 80 childcare foodservice establishments enrolled in the Suseong Center for Children's Foodservice Management in Daegu.RESULTS: An analysis of the soup salinity each year showed that the salinity decreased significantly from 0.48% in 2015 to 0.41% in 2017, particularly in clear soups and soybean soups compared to other soups (P < 0.05). The salinity and sodium content in seafood soups (0.45% and 179.1 mg/100 g, respectively) were highest, followed by soybean soups (0.44%, 175.2 mg/100 g), with perilla seed soups containing the lowest (0.42%, 167.2 mg/100 g) (P < 0.05). The salinity was significantly higher in institutional foodservice establishments than small foodservice establishments (P < 0.001). The salinity and sodium content were the highest in foodservice establishments with a small number of measurements, and the salinity was the lowest in foodservice establishments with salinity measurements performed an average of 151 times each year (three times a week) or more (P < 0.05). The soup salinity was low in the order of winter, spring, summer, and autumn, and the salinity decreased significantly year by year in all seasons. (P < 0.05).CONCLUSIONS: The soup salinity was significantly lower in foodservice establishments where the salinity was measured more than three times a week, indicating that continuous salinity management is effective.
Daegu
;
Food Services
;
Perilla
;
Salinity
;
Seafood
;
Seasons
;
Sodium
;
Soybeans
6.Relation of polyunsaturated fatty acid, n-3 fatty acid and n-6 fatty acid intakes and atopic dermatitis in the 9 ~ 11 year old children: KNHANES 2013 ~ 2015
Journal of Nutrition and Health 2019;52(1):47-57
PURPOSE: This study was conducted to investigate the relationship between atopic dermatitis and dietary fat and fatty acid (FA) intakes in 9 ~ 11 year old children. METHODS: We analyzed data from the combined 2013 ~ 2015 KNHANES (Korean National Health and Nutrition Examination Survey). Subjects were divided into two groups according to atopic dermatitis (AD); with AD and without AD. Data pertaining to macronutrients and FA intakes were obtained by a single 24-h dietary recall. Food sources were identified based on the amounts of total fat and FA consumption according to each food. The associations between each FA intake and atopic dermatitis were analyzed using simple and multiple logistic regression analyses. Age, sex, body mass index (BMI) and income levels were adjusted as covariates. RESULTS: Of the participants, 17.69% suffered from atopic dermatitis. Children with AD had significantly lower fat percentages of total energy and higher carbohydrate percentages of total energy than normal children. Percentages of energy and intakes of polyunsaturated fatty acid (PUFA), n-3 FA and n-6 FA in children with AD were significantly lower than those in normal children. In the FA, linoleic acid, γ-linoleic acid and α-linolenic acid levels of children with AD were significantly lower than those of normal children. However, the P/S ratio and n-6/n-3 ratio did not differ significantly between children with AD and normal children. Soybean oil was the main contributor to PUFA, n-3 FA and n-6 FA in both groups, while perilla seed oil and mackerel were the major food sources of n-3 FA in children with atopic dermatitis. Atopic dermatitis was significantly correlated with low-fat and high-carbohydrate diets. The adjusted odds ratios were 0.966, 0.776 and 0.963 for PUFA, n-3 FA, and n-6 FA intakes, respectively. CONCLUSION: The present study provides reliable evidence regarding the relationship between fat and FA intakes and AD in Korean children 9 ~ 11 years of age.
Body Mass Index
;
Child
;
Dermatitis, Atopic
;
Diet
;
Dietary Fats
;
Humans
;
Linoleic Acid
;
Logistic Models
;
Odds Ratio
;
Perciformes
;
Perilla
;
Soybean Oil
7.Study on morphological classification and chemical-type of Perilla frutescens cultivated germplasm.
Wei-Ping LI ; Chang-Ling WEI ; Chen-Wu ZHANG ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2019;44(3):454-459
Fifty cultivated Perilla seeds were collected all over the country and planted in Beijing experiment field for morphology and chemical-type researches. Twenty morphological characteristics were selected and observed, and the essential oil from leaves was extracted by steam distillation and analyzed by GC-MS to confirm chemical-types. There were significant diversities in plant height, leaf color and morphology, and fruit color and weight. Clustering analysis was carried out based on these morphological characteristics. Six types were divided with their chemical-type designated. Type Ⅰ: Six germplasms, attributed to P. frutescens var. crispa, with dwarf plants, thin creased purple leaf, named Crispa, their chemical types were diversified, including EK, PAPK, PA and PK. Type Ⅱ: Six germplasms, attributed to P. frutescens var. crispa, plants were taller than type I and with thin and creased green leaf, named Big Crispa, all PK type. Type Ⅲ: Seventeen germplasms, attributed to P. frutescens var. frutescens with leaf color upside green and underside purple, tall plant and wide distribution all over the China, named Ordinary Frutescens, all PK. Type Ⅳ: Four germplasms, attributed to P. frutescens var. acuta with tall plant and small seed, named Acuta, all PK. Type Ⅴ: Seven germplasms, attributed to P. frutescens var. frutescens with green leaves, tall plants and long clusters, named Long-spike Frutescens, all PK. Type Ⅵ: Ten germplasms, attributed to P. frutescens var. frutescens with big, thick and creased leaf, named Thick-leaf Frutescens, including PK, PP, PL and PA. The morphological classification of this paper would lay the foundation for the taxonomic naming and following evaluation of the Perilla germplasm resources.This study also showed that there was no correspondence but a certain correlation between volatile oil chemical-types and subspecies classification and morphological characteristics of Perilla.
China
;
Oils, Volatile
;
analysis
;
Perilla frutescens
;
anatomy & histology
;
chemistry
;
Plant Leaves
;
anatomy & histology
;
chemistry
8.Effect of different fertilization treatments on growth,secondary metabolites,and seed yield and quality of Perilla frutescens.
Qian FAN ; Jie YIN ; Ru-Xia BAI ; Li-Xia ZHENG ; Jian-Guo HUANG
China Journal of Chinese Materia Medica 2019;44(21):4588-4595
Perilla frutescens,an annual plant in Labiatae family,is grown throughout China and can be used for medicine purposes and as food additives. The present field experiment was carried out to study the effects of different fertilizer treatments on the concentrations and accumulations of antioxidant components,including flavonoids and polyphenols,growth,seed yields and qualities of this plant.The main aim of this study is to provide farmers some advice for improving the yields and qualities of P. frutescens in theory and practice.Five treatments were set up,including a no fertilizer control(CK),chemical fertilizers(CF),organic fertilizers(M),organic fertilizers plus chemical fertilizers at the rates of 1 ∶1 and 1 ∶3 in terms of nitrogen(50 M,25 M). Plant growth parameters were recorded and total flavonoids and polyphenols were determined in three key growth stages of P. frutescens. At the fast growth period,samples of roots,leaves,and stems were collected for determining a total of flavonoids and polyphenols as well as DPPH removal rate of ethanol extracts. Seed yields and qualities were also recorded at harvest. The results showed fertilization enhanced growth and seed yields although no significant difference was observed in growth and seed yields in inorganic-organic fertilizer treatments. The total flavonoids,polyphenols,and DPPH removal rate of ethanol extracts followed the sequence leaves>stems>roots,indicating synthesis of these metabolites in the leaves. DPPH removal rate showed a positive linear correlation with total flavonoid and polyphenol concentrations. In addition,organic-inorganic fertilization significantly increased the numbers of both effective panicles and paniclegrains. Fertilizer treatments had no effect on seed qualities of P. frutescens,while 50 M achieved the highest yield,which increased by 14. 73% compared to CF alone. In general,50 M increased antioxidant components,biomass,and seed yield of P. frutescens,meriting advocate in cultivation.
China
;
Fertilizers
;
Nitrogen
;
Perilla frutescens
;
Plant Leaves
;
Seeds
;
Soil
9.Pollen-Food Allergy Syndrome in Korean Pollinosis Patients: A Nationwide Survey.
Mi Ae KIM ; Dong Kyu KIM ; Hyeon Jong YANG ; Young YOO ; Youngmin AHN ; Hae Sim PARK ; Hyun Jong LEE ; Yi Yeong JEONG ; Bong Seong KIM ; Woo Yong BAE ; An Soo JANG ; Yang PARK ; Young Il KOH ; Jaechun LEE ; Dae Hyun LIM ; Jeong Hee KIM ; Sang Min LEE ; Yong Min KIM ; Young Joon JUN ; Hyo Yeol KIM ; Yunsun KIM ; Jeong Hee CHOI
Allergy, Asthma & Immunology Research 2018;10(6):648-661
PURPOSE: Pollen-food allergy syndrome (PFAS) is an immunoglobulin E (IgE)-mediated allergy in pollinosis patients caused by raw fruits and vegetables and is the most common food allergy in adults. However, there has been no nationwide study on PFAS in Korea. In this study, we investigated the prevalence and clinical characteristics of PFAS in Korea. METHODS: Twenty-two investigators participated in this study, in which patients with allergic rhinoconjunctivitis and/or bronchial asthma with pollen allergy were enrolled. The questionnaires included demographic characteristics, a list of fruits and vegetables, and clinical manifestations of food allergy. Pollen allergy was diagnosed by skin prick test and/or measurement of the serum level of specific IgE. RESULTS: A total of 648 pollinosis patients were enrolled. The prevalence of PFAS was 41.7% (n = 270). PFAS patients exhibited cutaneous (43.0%), respiratory (20.0%), cardiovascular (3.7%) or neurologic symptoms (4.8%) in addition to oropharyngeal symptoms. Anaphylaxis was noted in 8.9% of the PFAS patients. Seventy types of foods were linked to PFAS; e.g., peach (48.5%), apple (46.7%), kiwi (30.4%), peanut (17.4%), plum (16.3%), chestnut (14.8%), pineapple (13.7%), walnut (14.1%), Korean melon (12.6%), tomato (11.9%), melon (11.5%) and apricot (10.7%). Korean foods such as taro/taro stem (8.9%), ginseong (8.2%), perilla leaf (4.4%), bellflower root (4.4%), crown daisy (3.0%), deodeok (3.3%), kudzu root (3.0%) and lotus root (2.6%) were also linked to PFAS. CONCLUSIONS: This was the first nationwide study of PFAS in Korea. The prevalence of PFAS was 41.7%, and 8.9% of the PFAS patients had anaphylaxis. These results will provide clinically useful information to physicians.
Adult
;
Ananas
;
Anaphylaxis
;
Arachis
;
Asthma
;
Codonopsis
;
Crowns
;
Cucurbitaceae
;
Food Hypersensitivity
;
Fruit
;
Humans
;
Hypersensitivity*
;
Immunoglobulin E
;
Immunoglobulins
;
Juglans
;
Korea
;
Lotus
;
Lycopersicon esculentum
;
Neurologic Manifestations
;
Perilla
;
Pollen
;
Prevalence
;
Prunus armeniaca
;
Prunus domestica
;
Prunus persica
;
Pueraria
;
Research Personnel
;
Rhinitis, Allergic, Seasonal*
;
Skin
;
Vegetables
10.Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide.
Ah Young LEE ; Ji Myung CHOI ; Myoung Hee LEE ; Jaemin LEE ; Sanghyun LEE ; Eun Ju CHO
Nutrition Research and Practice 2018;12(2):93-100
BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide (H₂O₂)-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to 250 µM H₂O₂ for 24 h were treated with different concentrations of PO (25, 125, 250 and 500 µg/mL) and its major fatty acid, ALA (1, 2.5, 5 and 25 µ/mL). We examined the effects of PO and ALA on H₂O₂-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of H₂O₂ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the H₂O₂-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the H₂O₂-mediated up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by H₂O₂. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.
Adenosine Diphosphate Ribose
;
alpha-Linolenic Acid*
;
Apoptosis
;
Caspase 9
;
Cell Death*
;
Cell Survival
;
Down-Regulation
;
Humans
;
Hydrogen Peroxide*
;
Hydrogen*
;
L-Lactate Dehydrogenase
;
Neuroblastoma
;
Neurodegenerative Diseases
;
Neurons*
;
Neuroprotective Agents
;
Oxidative Stress
;
Perilla*

Result Analysis
Print
Save
E-mail