1.Genetic characteristic analysis of slight-to-moderate sensorineural hearing loss in children.
Rui ZHOU ; Jing GUAN ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):18-22
Objective:To analyze genetic factors and phenotype characteristics in pediatric population with slight-to-moderate sensorineural hearing loss. Methods:Children with slight-to-moderate sensorineural hearing loss of and their parents, enrolled from the Chinese Deafness Genome Project, were studied. Hearing levels were assessed using pure tone audiometry, behavioral audiometry, auditory steady state response(ASSR), auditory brainstem response(ABR) thresholds, and deformed partial otoacoustic emission(DPOAE). Classification of hearing loss is according to the 2022 American College of Medical Genetics and Genomics(ACMG) Clinical Practice Guidelines for Hearing Loss. Whole exome sequencing(WES) and deafness gene Panel testing were performed on peripheral venous blood from probands and validations were performed on their parents by Sanger sequencing. Results:All 134 patients had childhood onset, exhibiting bilateral symmetrical slight-to-moderate sensorineural hearing loss, as indicated by audiological examinations. Of the 134 patients, 29(21.6%) had a family history of hearing loss, and the rest were sporadic patients. Genetic causative genes were identified in 66(49.3%) patients. A total of 11 causative genes were detected, of which GJB2 was causative in 34 cases(51.5%), STRC in 10 cases(15.1%), MPZL2 gene in six cases(9.1%), and USH2A in five cases(7.6%).The most common gene detected in slight-to-moderate hearing loss was GJB2, with c. 109G>A homozygous mutation found in 16 cases(47.1%) and c. 109G>A compound heterozygous mutation in 9 cases(26.5%). Conclusion:This study provides a crucial genetic theory reference for early screening and detection of mild to moderate hearing loss in children, highlighting the predominance of recessive inheritance and the significance of gene like GJB2, STRC, MPZL2, USH2A.
Humans
;
Child
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Mutation
;
Usher Syndromes
;
Hearing Loss, Bilateral
;
Audiometry, Pure-Tone
;
Intercellular Signaling Peptides and Proteins
2.Characteristics of staphylococcal cassette chromosome mec and lugdunin operon genes in the complete genome of Staphylococcus lugdunensis.
Shining FU ; Yusheng CHEN ; Ke HU ; Tian QIN ; Yukun HE ; Lili ZHAO ; Xinqian MA ; Li CHEN ; Wenyi YU ; Yan YU ; Yu XIE ; Yifan WANG ; Donghong YANG ; Yu XU ; Zhancheng GAO
Chinese Medical Journal 2023;136(11):1367-1369
3.A case of juvenile arthritis associated with LACC1 gene variation.
Ying ZHANG ; Li Na SUN ; De Yue YUAN ; Li Ping SONG ; Lin ZHANG ; Ya Ping ZHANG
Chinese Journal of Pediatrics 2023;61(11):1048-1050
4.Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice.
Jia-Ming GU ; Hui XUE ; Ao XUE ; Jing JIANG ; Fang GENG ; Ji-Hui ZHAO ; Bo YANG ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4039-4045
This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.
Mice
;
Animals
;
Amyloid beta-Protein Precursor/genetics*
;
Mice, Transgenic
;
Arachidonic Acid
;
Tryptophan
;
Mice, Inbred C57BL
;
Alzheimer Disease/genetics*
;
Maze Learning
;
Glycerophospholipids
;
Disease Models, Animal
;
Amyloid beta-Peptides/metabolism*
5.Genetic diagnosis of Branchio-Oto syndrome pedigree due to a de novo heterozygous deletion of EYA1 gene.
Jingjing LI ; Hongfei KANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(9):1128-1133
OBJECTIVE:
To explore the genetic basis for a Chinese pedigree affected with Branchio-Oto syndrome (BOS).
METHODS:
A pedigree with BOS which had presented at the Genetics and Prenatal Diagnosis Center of the First Affiliated Hospital of Zhengzhou University in May 2021 was selected as the study subject. Clinical data of the pedigree was collected. Peripheral blood samples of the proband and her parents were collected. Whole exome sequencing (WES) was carried out for the proband. Multiplex ligation-dependent probe amplification (MLPA) was used to verify the result of WES, short tandem repeat (STR) analysis was used to verify the relationship between the proband and her parents, and the pathogenicity of the candidate variant was analyzed.
RESULTS:
The proband, a 6-year-old girl, had manifested severe congenital deafness, along with inner ear malformation and bilateral branchial fistulae. WES revealed that she has harbored a heterozygous deletion of 2 466 kb at chromosome 8q13.3, which encompassed the EYA1 gene. MLPA confirmed that all of the 18 exons of the EYA1 gene were lost, and neither of her parents has carried the same deletion variant. STR analysis supported that both of her parents are biological parents. Based on the guidelines from the American College of Medical Genetics and Genomics, the deletion was classified as pathogenic (PVS1+PS2+PM2_Supporting+PP4).
CONCLUSION
The heterozygous deletion of EYA1 gene probably underlay the pathogenicity of BOS in the proband, which has provided a basis for the clinical diagnosis.
Humans
;
Female
;
Pregnancy
;
Child
;
Pedigree
;
Family
;
Parents
;
Chromosomes, Human, Pair 3
;
Exons
;
Nuclear Proteins/genetics*
;
Protein Tyrosine Phosphatases
;
Intracellular Signaling Peptides and Proteins/genetics*
6.Clinical and genetic analysis of a child with maternal uniparental disomy of chromosome 20.
Chinese Journal of Medical Genetics 2023;40(11):1420-1424
OBJECTIVE:
To explore the clinical and genetic characteristics of a boy with isolated maternal uniparental disomy of chromosome 20 [UPD(20)mat].
METHODS:
A child who was admitted to the Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology on April 8,2021. was selected as the study subject. Phenotypic and endocrinological findings of the child were retrospectively analyzed. Whole exome sequencing (WES) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were carried out for detecting the UPD sequences and copy number variations. Both of his parents were verified by Sanger sequencing. Relevant literature was systematically reviewed.
RESULTS:
The child, a 3-year-and-8-month-old boy born to a 41-year-old mother by Cesarean delivery at 36+2 gestational weeks due to oligohydramia, had a birth weight of 2 300 g and length of 46 cm. He was admitted to the NICU for feeding difficulties which had persisted despite of clinical management. At the age of 3.75, he had a height of 92.5 cm (< 3rd percentile; 25th ~ 50th percentile at 2.5 years) and a weight of 10.8 kg (< 3rd percentile; 50th percentile at 15 months). He had also presented with growth retardation, short stature, attention deficit and hyperactivity disorder (ADHD), mild mental retardation, and speech and language development disorders. He had simian creases in both hands but no additional dysmorphic signs, and his motor development was normal. Serum insulin, thyroid-stimulating hormone, and insulin growth factor binding protein 3 levels were within the normal ranges, though insulin growth factor-1 (IGF-1) was slightly decreased. Since that time he had continuously used atomoxetine hydrochloride capsules to control his ADHD. WES and MS-MLPA revealed the existence of UPD (20)mat.
CONCLUSION
The UPD(20)mat syndrome is characterized by feeding difficulties, growth retardation and short stature. The child in our case has been accompanied by ADHD and speech and language development disorders, which required long-term treatment. For women with advanced maternal age and suggestive phenotypes, genetic testing and counseling should be conducted.
Male
;
Pregnancy
;
Humans
;
Child
;
Female
;
Infant
;
Adult
;
Chromosomes, Human, Pair 20
;
DNA Copy Number Variations
;
Retrospective Studies
;
Uniparental Disomy/genetics*
;
Atomoxetine Hydrochloride
;
Dwarfism
;
Intercellular Signaling Peptides and Proteins
;
Language Development Disorders
;
Growth Disorders
;
Insulins
7.Knock-down of ROCK2 gene improves cognitive function and reduces neuronal apoptosis in AD mice by promoting mitochondrial fusion and inhibiting its division.
Minfang GUO ; Huiyu ZHANG ; Peijun ZHANG ; Jingwen YU ; Tao MENG ; Suyao LI ; Lijuan SONG ; Zhi CHAI ; Jiezhong YU ; Cungen MA
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):701-707
Objective To explore the effect of knocking down Rho-associated coiled-coil kinase (ROCK2) gene on the cognitive function of amyloid precursor protein/presenilin-1 (APP/PS1) double transgenic mice and its mechanism. Methods APP/PS1 double transgenic mice were randomly divided into AD model group (AD group), ROCK2 gene knock-down group (shROCK2 group), ROCK2 gene knock-down control group (shNCgroup), and wild-type C57BL/6 mice of the same age served as the wild-type control (WT group). Morris water maze and Y maze were employed to test the cognitive function of mice. Neuron morphology was detected by Nissl staining. Immunofluorescence histochemical staining was used to detect the expression of phosphorylated dynamin-related protein 1 (p-Drp1) and mitochondrial fusion 1 (Mfn1). Western blot analysis was used to detect the expression ROCK2, cleaved-caspase-3 (c-caspase-3), B-cell lymphoma 2 (Bcl2), Bcl2-related protein X (BAX), p-Drp1, mitochondrial fission 1 (Fis1), optic atrophy 1 (OPA1), Mfn1 and Mfn2. Results Compared with AD group mice, the expression of ROCK2 in shROCK2 group mice was significantly reduced; the cognitive function was significantly improved with the number of neurons in the hippocampal CA3 and DG areas increasing, and nissl bodies were deeply stained; the expression of c-caspase-3 and BAX was decreased, while the expression of Bcl2 was increased; the expression of mitochondrial division related proteins p-Drp1 and Fis1 were decreased, while the expression of mitochondrial fusion-related proteins OPA1, Mfn1 and Mfn2 were increased. Conclusion Knock-down of ROCK2 gene can significantly improve the cognitive function and inhibit the apoptosis of nerve cells of APP/PS1 mice. The mechanism may be related to promoting mitochondrial fusion and inhibiting its division.
Animals
;
Mice
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cognition
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Mitochondrial Dynamics/genetics*
8.A state-of-the-art review on miRNA in prevention and treatment of Alzheimer 's disease.
Journal of Zhejiang University. Medical sciences 2023;52(4):485-498
Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid β, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.
Animals
;
Humans
;
MicroRNAs/genetics*
;
Alzheimer Disease/prevention & control*
;
Amyloid beta-Peptides
;
Apoptosis
;
Microglia
9.FJX1 overexpression is associated with poor prognosis and promotes gastric cancer proliferation via the PI3K/AKT signaling pathway.
Hao ZHANG ; Zhen ZHANG ; Qiusheng WANG ; Lian WANG ; Zi YANG ; Zhijun GENG ; Yueyue WANG ; Jing LI ; Lugen ZUO
Journal of Southern Medical University 2023;43(6):975-984
OBJECTIVE:
To investigate the expression of four-jointed box kinase 1 (FJX1) in gastric cancer (GC), its correlation with survival outcomes of the patients, and its role in GC progression.
METHODS:
The expression level of FJX1 in GC tissues and normal gastric mucosal tissues and its correlation with the survival outcomes of GC patients were analyzed using TCGA and GEO database GC cohort. Immunohistochemistry was used to detect FJX1 expression level in clinical specimens of GC tissue, and its correlations with the patients' clinicopathological parameters and prognosis were analyzed. Bioinformatic analysis was performed to identify the potential pathways of FJX1 in GC. The effects of FJX1 overexpression or FJX1 silencing on GC cell proliferation and expressions of proliferation-related proteins, PI3K, AKT, p-PI3K, and p-AKT were evaluated using CCK-8 assay and Western blotting. The effect of FJX1 overexpression on GC cell tumorigenicity was evaluated in nude mice.
RESULTS:
GC tissues showed significantly higher expressions of FJX1 mRNA and protein compared with normal gastric mucosa tissues (P < 0.05). The high expression of FJX1 was associated with poor prognosis of GC patients (P < 0.05) and served as an independent risk factor for poor survival outcomes in GC (P < 0.05). FJX1 was expressed mainly in the cytoplasm of GC cells in positive correlation with Ki67 expression (R=0.34, P < 0.05), and was correlated with CA199 levels, depth of tumor infiltration and lymph node metastasis of GC (P < 0.05). In the cell experiment, FJX1 level was shown to regulate the expressions of Ki67 and PCNA and GC cell proliferation (P < 0.05). Gene set enrichment analysis indicated that the PI3K/AKT pathway potentially mediated the effect of FJX1, which regulated the expressions of PI3K and AKT and their phosphorylated proteins. In nude mice, FJX1 overexpression in GC cells significantly promoted the growth of the transplanted tumors (P < 0.05).
CONCLUSION
FJX1 is highly expressed in GC tissues and is correlated with poor prognosis of GC patients. FJX1 overexpression promotes GC cell proliferation through the PI3K/AKT signaling pathway, and may serve as a potential prognostic biomarker and therapeutic target for GC.
Animals
;
Mice
;
Cell Proliferation
;
Ki-67 Antigen
;
Mice, Nude
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Signal Transduction
;
Stomach Neoplasms/pathology*
;
Humans
;
Intercellular Signaling Peptides and Proteins/genetics*
10.Cloning and functional verification of PhAEP gene, a key enzyme for biosynthesis of heterophyllin A in Pseudostellaria heterophylla.
Mi LU ; Yang YANG ; Tao ZHOU ; Wei ZHENG ; Jiao XU ; Hua HE ; Guo-Ping SHU ; Qing-Song YUAN ; Wei-Ke JIANG
China Journal of Chinese Materia Medica 2023;48(7):1851-1857
This paper aimed to study the role of asparagine endopeptidase(AEP) gene in the biosynthesis mechanism of cyclic peptide compounds in Pseudostellaria heterophylla. The transcriptome database of P. heterophylla was systematically mined and screened, and an AEP gene, tentatively named PhAEP, was successfully cloned. The heterologous function verification by Nicotiana benthamiana showed that the expression of the gene played a role in the biosynthesis of heterophyllin A in P. heterophylla. Bioinformatics analysis showed that the cDNA of PhAEP was 1 488 bp in length, encoding 495 amino acids with a molecular weight of 54.72 kDa. The phylogenetic tree showed that the amino acid sequence encoded by PhAEP was highly similar to that of Butelase-1 in Clitoria ternatea, reaching 80%. The sequence homology and cyclase active site analysis revealed that the PhAEP enzyme may specifically hydrolyse the C-terminal Asn/Asp(Asx) site of the core peptide in the HA linear precursor peptide of P. heterophylla, thereby participating in the ring formation of the linear precursor peptide. The results of real-time quantitative polymerase chain reaction(RT-qPCR) showed that the expression level of PhAEP was the highest in fruits, followed by in roots, and the lowest in leaves. The heterophyllin A of P. heterophylla was detected in N. benthamiana that co-expressed PrePhHA and PhAEP genes instantaneously. In this study, the PhAEP gene, a key enzyme in the biosynthesis of heterophyllin A in P. heterophylla, has been successfully cloned, which lays a foundation for further analysis of the molecular mechanism of PhAEP enzyme in the biosynthesis of heterophyllin A in P. heterophylla and has important significance for the study of synthetic biology of cyclic peptide compounds in P. heterophylla.
Genes, vif
;
Phylogeny
;
Plant Leaves/genetics*
;
Peptides, Cyclic
;
Cloning, Molecular
;
Caryophyllaceae/genetics*

Result Analysis
Print
Save
E-mail