1.Applications of bioactive peptides in cosmeceuticals: a review.
Journal of Zhejiang University. Science. B 2025;26(6):527-545
The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement. Notably, its market value is projected to exceed 750 billion U.S. dollars by 2025, and it is expanding as novel, climate-friendly, green, and sustainable components from natural sources are incorporated. This review is written based on the numerous reports on the potential applications of food-derived peptides while focusing on their possible uses in the formulation of cosmeceutical and skincare products. First, the production methods of bioactive peptides linked to cosmeceutical uses are described. Then, we discuss the obtainment and characterization of different anti-inflammatory, antimicrobial, antioxidant, anti-aging, and other pleiotropic peptides with their specific mechanisms, from various food sources. The review concludes with salient considerations of the cost of production and pilot scale operation, stability, compatibility, user safety, site-specificity, and delivery methods, when designing or developing biopeptide-based cosmeceutical products.
Cosmeceuticals/chemistry*
;
Peptides/pharmacology*
;
Humans
;
Antioxidants/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Anti-Infective Agents/pharmacology*
;
Cosmetics
;
Skin Aging/drug effects*
2.Preparation of polycaprolactone-polyethylene glycol-concentrated growth factor composite scaffolds and the effects on the biological properties of human periodontal ligament stem cells.
Li GAO ; Mingyue ZHAO ; Shun YANG ; Runan WANG ; Jiajia CHENG ; Guangsheng CHEN
West China Journal of Stomatology 2025;43(6):819-828
OBJECTIVES:
This study investigated the effects of a polycaprolactone (PCL)-polyethylene glycol (PEG) scaffold incorporated with concentrated growth factor (CGF) on the adhesion, proliferation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs).
METHODS:
The PCL-PEG-CGF composite scaffold was fabricated using an immersion and freeze-drying technique. Its microstructure, mechanical properties, and biocompatibility were systematically characterized. The hPDLSCs were isolated through enzymatic digestion, and the hPDLSCs were identified through flow cytometry. Third-passage hPDLSCs were seeded onto the composite scaffolds, and their adhesion, proliferation and osteogenic differentiation were assessed using CCK-8 assays, 4',6-diamidino-2-phenylindole (DAPI) staining, alkaline phosphatase (ALP) staining, alizarin red staining, and Western blot analysis of osteogenesis-related proteins [Runt-related transcription factor 2 (Runx2), ALP, and morphogenetic protein 2 (BMP2)].
RESULTS:
Scanning electron microscopy revealed that the PCL-PEG-CGF composite scaffold exhibited a honeycomb-like structure with heterogeneous pore sizes. The composite scaffold exhibited excellent hydrophilicity, as evidenced by a contact angle (θ) approaching 0° within 6 s. Its elastic modulus was measured at (4.590 0±0.149 3) MPa, with comparable hydrophilicity, fracture tensile strength, and fracture elongation to PCL-PEG scaffold. The hPDLSCs exhibited significantly improved adhesion to the PCL-PEG-CGF composite scaffold compared with the PCL-PEG scaffold (P<0.01). Additionally, cell proliferation was markedly improved in all the experimental groups on days 3, 5, and 7 (P<0.01), and statistically significant differences were found between the PCL-PEG-CGF group and other groups (P<0.01). The PCL-PEG-CGF group showed significantly elevated ALP activity (P<0.05), increased mineralization nodule formation, and upregulated expression of osteogenic-related proteins (Runx2, BMP2 and ALP; P<0.05).
CONCLUSIONS
The PCL-PEG-CGF composite scaffold exhibited excellent mechanical properties and biocompatibility, enhancing the adhesion and proliferation of hPDLSCs and promoting their osteogenic differentiation by upregulating osteogenic-related proteins.
Humans
;
Polyesters/chemistry*
;
Periodontal Ligament/cytology*
;
Polyethylene Glycols/chemistry*
;
Stem Cells/cytology*
;
Tissue Scaffolds
;
Cell Proliferation
;
Osteogenesis
;
Cell Differentiation
;
Cell Adhesion
;
Bone Morphogenetic Protein 2/metabolism*
;
Cells, Cultured
;
Alkaline Phosphatase/metabolism*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Intercellular Signaling Peptides and Proteins/pharmacology*
;
Tissue Engineering/methods*
3.Development of a tumor organoid culture system with peptide-based hydrogels.
Huibin WANG ; Dongdong ZHAO ; Lu ZHANG ; Zhandong WEI ; Jun LIANG ; Changhao BI
Chinese Journal of Biotechnology 2024;40(11):4157-4170
Peptide-based hydrogel, the polymer materials with a special network structure, are widely used in various fields of biomedicine due to their stable properties and biocompatibility. Environment-responsive self-assembled peptide aqueous solutions can respond to environment changes by the self-assembly of peptides into nanofiber networks. Peptide-based hydrogels well simulate the extracellular matrix and cell growth microenvironment, being suitable for 3D cell culture and organoid culture. To establish a tumor organoid culture system with peptide-based hydrogels, we cultured Panc-1, U87, and H358 cells in a 3D spherical manner using CulX Ⅱ peptide-based hydrogels in 24-well plates for 15 days. The organoids showed a 3D spherical shape, and their sizes increased with the extension of the culture time, with a final diameter ranging from 150 to 300 μm. The organoids had a large number, varying sizes, good cell viability, clear edges, and a good shape, which indicated successful organoid construction. The tumor organoid culture system established in this study with CulX Ⅱ peptide-based hydrogels provides a model for studying tumor pathogenesis, drug development, and tumor suppression.
Hydrogels/chemistry*
;
Organoids
;
Humans
;
Peptides/pharmacology*
;
Cell Line, Tumor
;
Cell Culture Techniques, Three Dimensional
;
Cell Culture Techniques
;
Cell Survival/drug effects*
;
Nanofibers/chemistry*
4.Construction and biological activity of metallothionein fused with ELP.
Longying LIU ; Tingting WANG ; Wei YU ; Simeng XU ; Xianlong YE
Chinese Journal of Biotechnology 2024;40(11):4242-4253
Metallothionein (MT) plays a significant role in heavy metal removal, antioxidant defense, and immune regulation. The current predominant approach for obtaining natural MT is extraction from tissue, which often entails complex procedures resulting in limited yields. In recent years, researchers have adopted the strategy of fusing labels such as GST or His for the heterologous expression of MT. However, a challenge in industrial production arises from the subsequent removal of these labels, which often leads to a significant reduction in the yield. The fusion with elastin-like polypeptides (ELPs) offers a promising solution for achieving soluble expression of the target protein, while providing a simple and fast purification process. In this study, ELP was fused with MT, which significantly up-regulated the soluble expression of MT. The fusion protein ELP-MT with the purity above 97% was obtained efficiently and simply by inverse transition cycling (ITC). ELP-MT exhibited a remarkable 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) scavenging activity, with the half maximal inhibitory concentration (IC50) of 0.77 μmol/L, which was 53.7 times that of the vitamin E derivative Trolox. In addition, the fusion protein demonstrated strong 1,1-diphenyl-2-trinitrohydrazine (DPPH) scavenging ability. Furthermore, ELP-MT had no toxicity to the proliferation and promoted the adhesion and migration of NIH/3T3 cells. All these results indicated that ELP-MT had good biocompatibility. We constructed the fusion protein ELP-MT combining the unique properties of MT and elastin, laying a technical foundation for the large-scale production of recombinant MT and facilitating the applications in food, health supplement, and cosmetic industries.
Metallothionein/metabolism*
;
Elastin/chemistry*
;
Recombinant Fusion Proteins/pharmacology*
;
Mice
;
Animals
;
Peptides/metabolism*
;
Escherichia coli/metabolism*
;
NIH 3T3 Cells
5.Research progress in anti-enzymatic antimicrobial peptides.
Changxuan SHAO ; Mengcheng WANG ; Yuanmengxue WANG ; Shiqi HE ; Yongjie ZHU ; Anshan SHAN
Chinese Journal of Biotechnology 2024;40(12):4396-4407
Antimicrobial peptides (AMPs) are small molecular peptides widely existing in the innate immunity of organisms, serving as the first line of defense. Natural AMPs possess various biological activities and are difficult to develop drug resistance. However, they are easily broken down by digestive enzymes in the body. In recent years, increasing methods have been reported to enhance the stability of AMPs, including incorporation of unnatural amino acids, chemical modifications, strategic avoidance of enzyme cleavage sites, cyclization, and nano peptide design. This review summarizes the methods for improving the stability of AMPs against protease degradation, aiming to provide references for further research in this field.
Antimicrobial Peptides/pharmacology*
;
Humans
;
Peptide Hydrolases/metabolism*
;
Protein Stability
;
Antimicrobial Cationic Peptides/chemistry*
;
Anti-Infective Agents/chemistry*
6.Research progress in mastoparans.
Anqi HUANG ; Yinfeng LIANG ; Sirui WANG ; Runrun SHE ; Jin YAN ; Yingyu WANG ; Luyao ZHANG ; Mingchun LIU
Chinese Journal of Biotechnology 2024;40(12):4408-4417
Mastoparans (MP), a class of α-helix cationic insect-derived antimicrobial peptides, have a broad spectrum of biological activities including inhibiting bacteria, fungi, viruses, and parasites. Amino acid substitution, peptide modification, peptide chain cyclization, and dosage form modification can enhance the biological activities and target and reduce the toxicity of mastoparans. In this review, we summarize the structure, biological function and modification methods of mastoparans, and prospect the development of antibacterial drugs based on mastoparans, so as to provide reference for the research of mastoparans as a new antibacterial drug.
Intercellular Signaling Peptides and Proteins/pharmacology*
;
Peptides/chemistry*
;
Anti-Bacterial Agents/chemistry*
;
Wasp Venoms/chemistry*
;
Animals
7.Influence of antimicrobial peptide biofunctionalized TiO2 nanotubes on the biological behavior of human keratinocytes and its antibacterial effect.
Yi LI ; Jin Jin WANG ; Yi De HE ; Min XU ; Xin Yan LI ; Bo Ya XU ; Yu Mei ZHANG
Chinese Journal of Stomatology 2023;58(2):165-173
Objective: To fabricate TiO2 nanotube material functionalized by antimicrobial peptide LL-37, and to explore its effects on biological behaviors such as adhesion and migration of human keratinocytes (HaCaT) and its antibacterial properties. Methods: The TiO2 nanotube array (NT) was constructed on the surface of polished titanium (PT) by anodization, and the antimicrobial peptide LL-37 was loaded on the surface of TiO2 nanotube (LL-37/NT) by physical adsorption. Three samples were selected by simple random sampling in each group. Surface morphology, roughness, hydrophilicity and release characteristics of LL-37 of the samples were analyzed with a field emission scanning electron microscope, an atomic force microscope, a contact angle measuring device and a microplate absorbance reader. HaCaT cells were respectively cultured on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of cell was observed by field emission scanning electron microscope. The number of cell adhesion was observed by cellular immunofluorescence staining. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Wound scratch assay was used to observe the migration of HaCaT. The above experiments were used to evaluate the effect of each group on the biological behavior of HaCaT cells. To evaluate their antibacterial effects, Porphyromonas gingivalis (Pg) was respectively inoculated on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of bacteria was observed by field emission scanning electron microscope. Bacterial viability was determined by live/dead bacterial staining. Results: A uniform array of nanotubes could be seen on the surface of titanium samples in LL-37/NT group, and the top of the tube was covered with granular LL-37. Compared with PT group [the roughness was (2.30±0.18) nm, the contact angle was 71.8°±1.7°], the roughness [(20.40±3.10) and (19.10±4.11) nm] and hydrophilicity (the contact angles were 22.4°±3.1° and 25.3°±2.2°, respectively) of titanium samples increased in NT and LL-37/NT group (P<0.001). The results of in vitro release test showed that the release of antimicrobial peptide LL-37 was characterized by early sudden release (1-4 h) and long-term (1-7 d) slow release. With the immunofluorescence, more cell attachment was found on NT and LL-37/NT than that on PT at the first 0.5 and 2.0 h of culture (P<0.05). The results of CCK-8 showed that there was no significant difference in the proliferation of cells among groups at 1, 3 and 5 days after culture. Wound scratch assay showed that compared with PT and NT group, the cell moved fastest on the surface of titanium samples in LL-37/NT group at 24 h of culture [(96.4±4.9)%] (F=35.55, P<0.001). A monolayer cells could be formed and filled with the scratch in 24 h at LL-37/NT group. The results of bacterial test in vitro showed that compared with the PT group, the bacterial morphology in the NT and LL-37/NT groups was significantly wrinkled, and obvious bacterial rupture could be seen on the surface of titanium samples in LL-37/NT group. The results of bacteria staining showed that the green fluorescence intensity of titanium samples in LL-37/NT group was the lowest in all groups (F=66.54,P<0.001). Conclusions: LL-37/NT is beneficial to the adhesion and migration of HaCaT cells and has excellent antibacterial properties, this provides a new strategy for the optimal design of implant neck materials.
Humans
;
Titanium/chemistry*
;
Antimicrobial Peptides
;
Cathelicidins
;
Sincalide
;
Anti-Bacterial Agents/pharmacology*
;
Nanotubes/chemistry*
;
Dental Materials
;
Bacteria
;
Keratinocytes
;
Surface Properties
8.Progress on the design and optimization of antimicrobial peptides.
Ruonan ZHANG ; Di WU ; Yitian GAO
Journal of Biomedical Engineering 2022;39(6):1247-1253
Antimicrobial peptides (AMPs) are a class of peptides widely existing in nature with broad-spectrum antimicrobial activity. It is considered as a new alternative to traditional antibiotics because of its unique mechanism of antimicrobial activity. The development and application of natural AMPs are limited due to their drawbacks such as low antimicrobial activity and unstable metabolism. Therefore, the design and optimization of derived peptides based on natural antimicrobial peptides have become recent research hotspots. In this paper, we focus on ribosomal AMPs and summarize the design and optimization strategies of some related derived peptides, which include reasonable primary structure modification, cyclization strategy and computer-aided strategy. We expect to provide ideas for the design and optimization of antimicrobial peptides and the development of anti-infective drugs through analysis and summary in this paper.
Antimicrobial Cationic Peptides/chemistry*
;
Antimicrobial Peptides
;
Drug Design
;
Anti-Infective Agents/pharmacology*
;
Anti-Bacterial Agents
9.Research progress of natural collagen peptides and its skincare efficacy.
Yaqi WU ; Haiyan JU ; Yonggang LYU
Journal of Biomedical Engineering 2022;39(6):1254-1262
Natural collagen peptides are collagen hydrolysates. Because of their unique physicochemical properties and excellent biological activities, collagen peptides have been a research hotspot of cosmetic raw materials development and skincare efficacy improvement. Combined with the needs of the skincare efficacy and the development trends of cosmetics, the extraction methods and their structural characteristics of natural collagen peptides were summarized in detail. The applications and its research progress in skincare efficacy of collagen peptides, such as moisturizing and anti-wrinkle, trophism and anti-aging, filling and skin regeneration were expressed with emphasis. Finally, the development and practical applications in cosmetics of natural collagen peptides were adequately prospected.
Skin Care
;
Skin
;
Peptides/pharmacology*
;
Cosmetics/chemistry*
;
Collagen
10.A new cyclopeptide from Selaginella tamariscina.
Xin-Jia YAN ; Jing WEN ; Yang SONG ; Dong-Mei SHA ; Ma-Li-Niu SHA ; Shao-Shan ZHANG ; Yuan LIU
China Journal of Chinese Materia Medica 2022;47(16):4391-4394
One new cyclopeptide was isolated from the ethyl acetate fraction of the 75% EtOH extract of Selaginella tamariscina by various column chromatography methods(HP-20, polyamide and semi-preparative HPLC). Its structure was identified as selapeptin A(1) by extensive spectroscopic analysis(HR-ESI-MS, 1 D and 2 D NMR). Compound 1 was evaluated for cytotoxic activities by MTT assay. It showed potent cytotoxic activity against B16 F10 with the inhibition rate of 51.57%±4.34% at 40 μmol·L~(-1) while had no impacts on MDA-MB-231 and MDA-MB-468 at 100 μmol·L~(-1).
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Peptides, Cyclic/pharmacology*
;
Selaginellaceae/chemistry*

Result Analysis
Print
Save
E-mail