1.Research Progress of Traditional Chinese Medicine Intervention in Malignant Tumor Metastasis Based on Metabolic Reprogramming
Hesheng LI ; Chunchan LI ; Huahui GUO ; Jiasheng HUANG ; Congying LAN ; Penghui CHEN ; Renfa HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):272-280
Malignant tumor metastasis is the key factor leading to poor prognosis of patients, and it is a difficult problem to be overcome in the field of tumor therapy. Metabolic reprogramming, as a key link in the regulation of tumor metastasis activity, affects the growth, invasion, and metastasis of tumor cells by changing the metabolic pathways of intracellular substances (such as glucose, amino acids, lipids, and nucleotides). In particular, metabolic reprogramming plays a key role in the multistage linked steps related to tumor metastasis and can play a crucial role in several key stages of tumor tissue dissociation in situ, hematogenous metastasis, and remote colonization. Malignant tumor cells can selectively adjust their own metabolic state to adapt to the growth conditions of different metastatic microenvironments and colonization sites and then choose the most favorable growth and metabolism strategy. According to the holistic concept of traditional Chinese medicine (TCM), the metastasis of malignant tumors is generally closely related to the metabolic state of the whole body. One of the advantages of TCM in the treatment of malignant tumors is systemic regulation. With its multi-pathway, multi-target, and multi-component therapeutic characteristics, TCM can effectively control the metastasis of malignant tumors by regulating the degradation of tumor epithelial mesenchymal transformation (EMT) and extracellular matrix (ECM), anchoring the independent growth of tumor cells and the tumor microenvironment. In this paper, the potential regulatory effects of metabolic reprogramming on the metastasis of malignant tumors were discussed, and the latest research progress of the regulation of metabolic reprogramming by TCM on tumor metastasis was reviewed. At the same time, the key targets of TCM and its bioactive components in the process of tumor metastasis intervention were reviewed. This study aims to provide a more valuable basis and clearer idea for the treatment of malignant tumor metastasis by regulating metabolic reprogramming with TCM.
2.Rapid Analysis of Chemical Constituents from Ethanol Extracts of Yuye Detoxification Particle Based on UPLC-Q-TOF-MS/MS and Molecular Network Technology
Xiaolong FENG ; Yuan CAI ; Penghui LI ; Jun CHEN ; Kaiyi CHEN ; Hongping LONG ; Yanmei PENG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(10):1581-1592
Objective UPLC-Q-TOF-MS integrated molecular network strategy was used to rapidly analyze and identify the chemical components of Yuye detoxification Particle. Methods The secondary mass spectrometry data of compounds were obtained using mass spectrometry scanning in both positive and negative ion mode. The similarity of MS/MS fragmentation patterns was calculated to create the global natural product social molecular networking (GNPS) platform. The major components in Yuye detoxification Particle were quickly identified according to the molecular clusters with similar structures in GNPS. Manual analysis and identification of other compounds were performed according to the mass fragment ion information of the primary and secondary mass spectrum data and related references by using the molecular feature extraction (MFE) function of Agilent Masshunter Qualitative Analysis workstation and traditional Chinese Medicine composition database (TCM-DATA). Results A total of 89 compounds in Yuye detoxification Particle were identified by LC-MS,including 22 phenoliacids,21 flavonoids and their glycosides,6 iridoid glycosides,28 triterpenoid saponins and 12 other types of ingredients. Conclusion UPLC-Q-TOF-MS/MS integrated molecular network technology can be used for rapid and systematic identification of chemical components of Yuye detoxification Particle,which provides theoretical basis for its quality control and clinical application. The established molecular network can provide reference for rapid qualitative analysis of components of traditional Chinese medicine compound.
3.Ghrelin affects feed intake and body weight of mice through CART neurons in lat-eral hypothalamic nucleus
Xiaojuan CAO ; Haodong LIU ; Penghui LI ; Jiacheng LI ; Qi FAN ; Xing WANG ; Yu-Jie CHEN ; Rihan HAI ; Xiaoyu ZHANG ; Chenguang DU
Chinese Journal of Veterinary Science 2024;44(6):1268-1273
Ghrelin is a hormone produced by the stomach that regulates energy metabolism after acting on the central nervous system.Cocaine amphetamine-regulated transcriptional peptide(CART)neurons participate in the regulation of feeding behavior and energy balance.It is known that CART neurons are influenced by hormones to regulate energy homeostasis,but whether ghre-lin exerts its pro-appetite function by influencing CART neurons is unknown.Therefore,this study focuses on the role of VMHCART neurons in the regulation of feeding and relative body weight by ghrelin.Firstly,the whole brain expression of CART was determined by immunofluorescence.Then the effect of intraperitoneal injection of ghrelin on the expression of DMHCART neurons was evalua-ted.Finally,the ghrelin was delivered to DMH and the changes of food intake and relative body weight of mice were measured.CART immunoreactive neurons were detected in medial preoptic nucleus(MPA),arcuate nucleus(ARC),dorsomedial hypothalamic nucleus(DMH),thalamic pa-raventricular nucleus(PVT)and raphe nucleus(ROb).Compared with the control group,periph-eral injection of ghrelin significantly increased the expression of DMHC ART immunoreactive neurons(P=0.037 3).DMH long-term injection of ghrelin resulted in an increase in body weight(P=0.004 0)and feed intake(P=0.023 1).The results provide anatomical evidence for the whole brain distribution of CART,which proves that ghrelin affects feed intake and body weight of mice through CART neurons in DMH,suggesting that specific neuron types and regional specificity are involved in ghrelin regulation of feed intake and energy homeostasis.
4.Deficiency of ASGR1 Alleviates Diet-Induced Systemic Insulin Resistance via Improved Hepatic Insulin Sensitivity
Xiaorui YU ; Jiawang TAO ; Yuhang WU ; Yan CHEN ; Penghui LI ; Fan YANG ; Miaoxiu TANG ; Abdul SAMMAD ; Yu TAO ; Yingying XU ; Yin-Xiong LI
Diabetes & Metabolism Journal 2024;48(4):802-815
Background:
Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown.
Methods:
The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro.
Results:
ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis.
Conclusion
The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.
5.Standardized Treatment and Shortened Depression Course can Reduce Cognitive Impairment in Adolescents With Depression
Penghui CAO ; Junjie TAN ; Xuezhen LIAO ; Jinwei WANG ; Lihuan CHEN ; Ziyan FANG ; Nannan PAN
Journal of the Korean Academy of Child and Adolescent Psychiatry 2024;35(1):90-97
Objectives:
This study aimed to explore the influence of depression severity, disease course, treatment status, and other factors on cognitive function in adolescents with depressive disorders.
Methods:
Participants who met the inclusion criteria were enrolled in the study. Sociodemographic data of each participant were recorded, including age, sex, and family history of mental disorders. Zung’s Self-Rating Depression Scale was used to assess depression status in adolescents. Moreover, P300 and mismatch negativity (MMN) were used to objectively evaluate the participants’ cognitive function.
Results:
Only 26.8% of the adolescents with depression received standard antidepressant treatment. The latencies of N2 (267.80±23.34 ms), P3 (357.71±32.09 ms), and MMN (212.10±15.61 ms) in the adolescent depression group were longer than those in the healthy control group (p<0.01). Further analysis revealed that the latency of MMN was extended with increased levels of depression in adolescents.The MMN latency was short in participants with depression receiving standardized treatment. Furthermore, the latency of MMN was positively correlated with the severity and duration of depression (correlation coefficients were 0.465 and 0.479, respectively) (p<0.01).
Conclusion
Receiving standardized treatment and shortening the course of depression can reduce cognitive impairment in adolescents with depression.
6.SWI/SNF Complex Gene Mutations Promote the Liver Metastasis of Non-small Cell Lung Cancer Cells in NSI Mice.
Lingling GAO ; Zhi XIE ; Shouheng LIN ; Zhiyi LV ; Wenbin ZHOU ; Ji CHEN ; Linlin ZHU ; Li ZHANG ; Penghui ZENG ; Xiaodan HUANG ; Wenqing YAN ; Yu CHEN ; Danxia LU ; Shuilian ZHANG ; Weibang GUO ; Peng LI ; Xuchao ZHANG
Chinese Journal of Lung Cancer 2023;26(10):753-764
BACKGROUND:
The switch/sucrose nonfermentable chromatin-remodeling (SWI/SNF) complex is a pivotal chromatin remodeling complex, and the genomic alterations (GAs) of the SWI/SNF complex are observed in several cancer types, correlating with multiple biological features of tumor cells. However, their role in liver metastasis of non-small cell lung cancer (NSCLC) remains unclear. Our study aims to investigate the role and potential mechanisms underlying NSCLC liver metastasis induced by the GAs of SWI/SNF complex.
METHODS:
The GAs of SWI/SNF complex in NSCLC cell lines (H1299, H23 and H460) were identified by whole-exome sequencing (WES). ARID1A knockout H1299 cell was constructed with the CRISPR/Cas9 technology. The mouse model of liver metastasis from NSCLC was established to simulate lung cancer liver metastasis and observe the metastasis rate under different gene mutation conditions. RNA sequencing and Western blot were conducted for differential gene expression analysis. Immunohistochemistry (IHC) analysis was used to assess protein expression levels of SWI/SNF-regulated target molecules in mouse liver metastases.
RESULTS:
WES analysis revealed intracellular gene mutations. The animal experiments demonstrated a correlation between the GAs of SWI/SNF complex and a higher liver metastasis rate in immunodeficient mice. Transcriptome sequencing and Western blot analysis showed upregulated expression of ALDH1A1 and APOBEC3B in SWI/SNF-mut cells, particularly in ARID1A-deficient H460 and H1299 sgARID1A cells. IHC staining of mouse liver metastases further demonstrated elevated expression of ALDH1A1 in the H460 and H1299 sgARID1A group.
CONCLUSIONS
This study underscores the critical role of the GAs of SWI/SNF complex, such as ARID1A and SMARCA4, in promoting liver metastasis of lung cancer cells. The GAs of SWI/SNF complex may promote liver-specific metastasis by upregulating ALDH1A1 and APOBEC3B expression, providing novel insights into the molecular mechanisms underlying lung cancer liver metastasis.
Animals
;
Mice
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Mutation
;
Liver Neoplasms/genetics*
7.High-throughput transcriptional profiling of perturbations by Panax ginseng saponins and Panax notoginseng saponins using TCM-seq
Junyun CHENG ; Jie CHEN ; Jie LIAO ; Tianhao WANG ; Xin SHAO ; Jinbo LONG ; Penghui YANG ; Anyao LI ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Journal of Pharmaceutical Analysis 2023;13(4):376-387
Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng sa-ponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also char-acterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the tran-scriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.
8.On the construction of private class learning community based on intelligent teaching platform and analysis of its application effects
Penghui CHEN ; Yandong ZHAO ; Huizhong WEN ; Yi ZHOU ; Ying XIONG
Chinese Journal of Medical Education Research 2023;22(1):70-74
In order to improve the effectiveness of private class inquiry with the development of information teaching, the smart teaching platform has been established, with instructional management, curriculum setting, teacher preparation, classroom application, supervision and monitoring modules. Taking the platform as the medium, the small class inquiry learning community of entity curriculum is constructed between students and the teachers. In the eight-year medical teaching, the content of learning cycle is designed according to the entity curriculum, which is issued on cloud platform before class, in class and after class. Students learn basic concepts by themselves in the learning community, explore the application of knowledge under the guidance of teachers, and expand knowledge in class or after class. After having test in teaching procedure, the small class learning community based on smart teaching cloud platform has a submission rate, interaction rate and score rate of more than 90%. It can not only make full use of the advantages of information-based teaching resources, but also build face-to-face learning community in the course teaching, reflecting the emotional interaction of personalized teaching. It's suggested that new approaches to teaching should be student-centered and activity-based, engaging students actively in the learning process, which can promote students' autonomous learning ability and innovative thinking ability.
9.Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies.
Zhenan DENG ; Meiling JIN ; Changxing OU ; Wei JIANG ; Jianping ZHAO ; Xiaoxia LIU ; Shenghua SUN ; Huaping TANG ; Bei HE ; Shaoxi CAI ; Ping CHEN ; Penghui WU ; Yujing LIU ; Jian KANG ; Yunhui ZHANG ; Mao HUANG ; Jinfu XU ; Kewu HUANG ; Qiang LI ; Xiangyan ZHANG ; Xiuhua FU ; Changzheng WANG ; Huahao SHEN ; Lei ZHU ; Guochao SHI ; Zhongmin QIU ; Zhongguang WEN ; Xiaoyang WEI ; Wei GU ; Chunhua WEI ; Guangfa WANG ; Ping CHEN ; Lixin XIE ; Jiangtao LIN ; Yuling TANG ; Zhihai HAN ; Kian Fan CHUNG ; Qingling ZHANG ; Nanshan ZHONG
Chinese Medical Journal 2023;136(2):230-232
10.Detection of IgG protein in human urine based on vertical flow paper microfluidic chip.
Xinru LI ; Xinyi WANG ; Ziyu WEI ; Penghui ZHANG ; Jingwen XU ; Lang XU ; Feifan ZHENG ; Zhenwei YANG ; Yuanyuan CHEN ; Xianbo QIU ; Lulu ZHANG
Chinese Journal of Biotechnology 2023;39(1):337-346
The kidney is the body's most important organ and the protein components in urine could be detected for diagnosing certain diseases. The amount of IgG protein in urine could be used to determine the degree of kidney function damage. IgG protein in human urine was detected by vertical flow paper-based microfluidic chip, double-antibody sandwich immunoreaction, and cell phone image processing. The results showed that using an IgG antibody concentration of 500 μg/mL and a gold standard antibody concentration of 100 μg/mL, the image signal showed a good linear relationship in the range of IgG concentration of 0.2-3.2 μg/mL, with R2=0.973 3 achieved. A complete set of detection devices were designed and the detection method showed good non-specificity.
Humans
;
Microfluidics
;
Immunoglobulin G
;
Kidney
;
Microfluidic Analytical Techniques

Result Analysis
Print
Save
E-mail