1.Changes in hemoglobin and related influencing factors in patients with liver failure undergoing artificial liver support therapy
Ying LIN ; Li CHEN ; Fei PENG ; Jianhui LIN ; Chuanshang ZHUO
Journal of Clinical Hepatology 2025;41(1):104-109
ObjectiveTo investigate the changing trend of hemoglobin (Hb) and related influencing factors in patients with liver failure after artificial liver support system (ALSS) therapy. MethodsA total of 106 patients with liver failure who were hospitalized and received ALSS therapy in our hospital from January to December 2018 were enrolled and analyzed in terms of clinical data and red blood cell parameters such as Hb, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and red blood cell distribution width-coefficient of variation (RDW-CV). A one-way repeated-measures analysis of variance was used for comparison of continuous data with repeated measurement between groups, and the paired t-test was used for comparison between two groups. The Kruskal-Wallis H test was used for comparison of continuous data with skewed distribution between multiple groups, the Mann-Whitney U test was used for further comparison between two groups. Univariate and multivariate linear regression analyses were used to identify the influencing factors for the reduction in Hb after ALSS therapy. ResultsThe 106 patients with liver failure received 606 sessions of ALSS therapy, and Hb was measured for 402 sessions before and after treatment. There was a significant reduction in Hb after ALSS therapy in the patients with liver failure (97.49±20.51 g/L vs 109.38±20.22 g/L, t=32.764, P<0.001). Longitudinal observation was further performed for 14 patients with liver failure, and the results showed that the level of Hb was 108.50±21.61 g/L before the last session of ALSS therapy, with certain recovery compared with the level of Hb (103.14±19.15 g/L) on the second day after ALSS, and there was an increase in Hb on day 3 (102.57±21.73 g/L) and day 7 (105.57±22.04 g/L) after surgery. The level of Hb in patients with liver failure on the second day after ALSS decreased with the increase in the number of ALSS sessions (F=8.996, P<0.001), while MCV and MCH gradually increased with the increase in the number of ALSS sessions (F=9.154 and 13.460, P=0.004 and P<0.001), and RDW-CV first gradually increased and then gradually decreased (F=4.520, P=0.032); MCHC showed fluctuations with no clear trend (F=0.811, P=0.494). The multivariate linear regression analysis showed that the duration of ALSS therapy, the mode of ALSS therapy, and initial treatment were independent risk factors for the reduction in Hb after ALSS therapy. ConclusionALSS therapy can influence the level of peripheral blood Hb in patients with liver failure, and patient blood management should be strengthened for patients with liver failure who are receiving ALSS therapy.
2.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
3.Construction and Validation of a Large Language Model-Based Intelligent Pre-Consultation System for Traditional Chinese Medicine
Yiqing LIU ; Ying LI ; Hongjun YANG ; Linjing PENG ; Nanxing XIAN ; Kunning LI ; Qiwei SHI ; Hengyi TIAN ; Lifeng DONG ; Lin WANG ; Yuping ZHAO
Journal of Traditional Chinese Medicine 2025;66(9):895-900
ObjectiveTo construct a large language model (LLM)-based intelligent pre-consultation system for traditional Chinese medicine (TCM) to improve efficacy of clinical practice. MethodsA TCM large language model was fine-tuned using DeepSpeed ZeRO-3 distributed training strategy based on YAYI 2-30B. A weighted undirected graph network was designed and an agent-based syndrome differentiation model was established based on relationship data extracted from TCM literature and clinical records. An agent collaboration framework was developed to integrate the TCM LLM with the syndrome differentiation model. Model performance was comprehensively evaluated by Loss function, BLEU-4, and ROUGE-L metrics, through which training convergence, text generation quality, and language understanding capability were assessed. Professional knowledge test sets were developed to evaluate system proficiency in TCM physician licensure content, TCM pharmacist licensure content, TCM symptom terminology recognition, and meridian identification. Clinical tests were conducted to compare the system with attending physicians in terms of diagnostic accuracy, consultation rounds, and consultation duration. ResultsAfter 100 000 iterations, the training loss value was gradually stabilized at about 0.7±0.08, indicating that the TCM-LLM has been trained and has good generalization ability. The TCM-LLM scored 0.38 in BLEU-4 and 0.62 in ROUGE-L, suggesting that its natural language processing ability meets the standard. We obtained 2715 symptom terms, 505 relationships between diseases and syndromes, 1011 relationships between diseases and main symptoms, and 1 303 600 relationships among different symptoms, and constructed the Agent of syndrome differentiation model. The accuracy rates in the simulated tests for TCM practitioners, licensed pharmacists of Chinese materia medica, recognition of TCM symptom terminology, and meridian recognition were 94.09%, 78.00%, 87.50%, and 68.80%, respectively. In clinical tests, the syndrome differentiation accuracy of the system reached 88.33%, with fewer consultation rounds and shorter consultation time compared to the attending physicians (P<0.01), suggesting that the system has a certain pre- consultation ability. ConclusionThe LLM-based intelligent TCM pre-diagnosis system could simulate diagnostic thinking of TCM physicians to a certain extent. After understanding the patients' natural language, it collects all the patient's symptom through guided questioning, thereby enhancing the diagnostic and treatment efficiency of physicians as well as the consultation experience of the patients.
4.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
5.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
6.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
7.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
8.A case-crossover study on association between ambient temperature and injury incidence in Shenzhen City
Yan MA ; Qijiong ZHU ; Weicong CAI ; Ping XU ; Zhixue LI ; Jianxiong HU ; Wenjun MA ; Tao LIU ; Ying XU ; Ji PENG
Journal of Environmental and Occupational Medicine 2025;42(5):536-542
Background Under the background of global warming, research on association between ambient temperature and risk of injury is needed. Objective To examine the effect of temperature on injury in Bao'an district, Shenzhen and identify the sensitive population, thereby providing a scientific basis for formulating prevention and control strategies and measures of injury. Methods The injury reports from the Injury Surveillance System and the meteorological data of Bao'an District between 2018 to 2022 were collected. The meteorological data were sourced from the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) land reanalysis data. Based on time-stratified case-crossover design, conditional logistic regression combined with distributed lag nonlinear model was used to evaluate the exposure-response association between ambient temperature and injury. The stratified analyses were further conducted by gender, age, and causes of injury. Results A total of
9.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
10.Determination method of clopidogrel and its metabolites in rat plasma and its pharmacokinetic study
Huan YI ; Lan MIAO ; Changying REN ; Li LIN ; Mingqian SUN ; Qing PENG ; Ying ZHANG ; Jianxun LIU
China Pharmacy 2025;36(13):1599-1603
OBJECTIVE To establish a method for determining the contents of clopidogrel (CLP), clopidogrel carboxylate (CLP-C), clopidogrel acyl-β-D-glucuronide (CLP-G) and contents of clopidogrel active metabolite (CAM) in rat plasma, and to investigate their in vivo pharmacokinetic characteristics. METHODS The Shisedo CAPCELL ADME column was used with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) in a gradient elution. The flow rate was 0.4 mL/min, and the column temperature was maintained at 20 ℃. The injection volume was 2 μL. The analysis was performed in positive ion mode using electrospray ionization with multiple reaction monitoring. The ion pairs for quantitative analysis were m/z 322.1→211.9 (for CLP), m/z 308.1→197.9 (for CLP-C), m/z 322.1→154.8 (for CLP-G), m/z 504.1→154.9 [for racemic CAM derivative (CAMD)]. Six rats were administered a single intragastric dose of CLP (10 mg/kg). Blood samples were collected before medication and at 0.08, 0.33, 0.66, 1, 2, 4, 6, 10, 23 and 35 hours after medication. The established method was used to detect the serum contents of various components in rats. Pharmacokinetic parameters were then calculated using WinNonlin 6.1 software. RESULTS The linear ranges for CLP, CLP-C and CAMD were 0.08-20.00, 205.00-8 000.00, and 0.04-25.00 ng/mL, respectively (r≥0.990). The relative standard deviations for both intra-day and inter-day precision tests were all less than 15%, and the relative errors for accuracy ranged from -11.68% to 14.40%. The coefficients of variation for the matrix factors were all less than 15%, meeting the requirements for bioanalytical method validation. The results of the pharmacokinetic study revealed that, following a single intagastric administration of CLP in rats, the exposure to the parent CLP in plasma was extremely low. Both the area under the drug concentration-time curve (AUC0-35 h) and the peak concentration of the parent CLP were lower than those of its metabolites. The AUC0-35 h of the active metabolite CAM was approximately 43 times that of CLP, though it had a shorter half-life (2.53 h). The inactive metabolite CLP-C exhibited the highest exposure level, but it reached its peak concentration the latest and was eliminated slowly. The AUC0-35 h of CLP-G was about four times that of CAM, and its half-life was similar to that of CLP-C. CONCLUSIONS This study successfully established an liquid chromatography-tandem mass spectrometry method for the determination of CLP and its three metabolites, and revealed their pharmacokinetic characteristics in rats. Specifically, the parent drug CLP was rapidly eliminated, while the inactive metabolites CLP-C and CLP-G exhibited long half-lives, and active metabolite CAM displayed a transient exposure pattern.

Result Analysis
Print
Save
E-mail