1.Correlation between Kayser-Fleischer ring grading and cognitive function in Wilson’s disease
Wei HE ; Yulong YANG ; Wenming YANG ; Yue YANG ; Chen HU ; Hui LI ; Peng HUANG
Journal of Clinical Hepatology 2025;41(6):1150-1155
ObjectiveTo investigate the correlation with cognitive function based on a new Kayser-Fleischer ring (K-F ring) grading method in Wilson’s disease (WD). MethodsA total of 136 WD patients who were hospitalized in Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, from April 2022 to October 2023 were enrolled. All subjects underwent slit lamp examination, and the grade of K-F ring was determined according to the shape and extent of copper deposition in the cornea, whether it formed a ring or not, and whether there was a sunflower-like cloudy change in the lens. The patients were instructed to complete UWDRS, MoCA, and MMSE scale assessments, and these indicators were compared between patients with different K-F ring grades. An analysis of variance was used for comparison of normally distributed continuous data between multiple groups, and the least significant difference t-test (homogeneity of variance) or the Dunnett’s T3 test (heterogeneity of variance) was used for further multiple comparisons; the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between multiple groups; the chi-square test was used for comparison of categorical data between groups. The Spearman correlation analysis was used to investigate the correlation of K-F ring grade with UWDRS, MoCA, and MMSE scores. ResultsAmong the 136 patients with WD, there were 40 patients with grade 4 K-F ring, accounting for the highest proportion of 29.4%, and 14 patients with grade 0 K-F ring, accounting for the lowest proportion of 10.3%, and there were 22 patients with grade 1 K-F ring (16.2%), 19 with grade 2 K-F ring (14%), 25 with grade 3 K-F ring (18.4%), and 16 with grade 5 K-F ring (11.7%). According to the different grades of K-F ring, there was a significant increase in UWDRS score (F=22.61, P<0.001) and significant reductions in MoCA and MMSE scores (F=16.40 and 13.80, both P<0.001). The Spearman correlation analysis showed that K-F ring grade was positively correlated with UWDRS score (r=0.67, P<0.01) and was negatively correlated with MoCA and MMSE scores in WD patients (r=-0.59 and -0.57, both P<0.01). ConclusionThe new K-F ring grading method can determine disease severity in WD patients to a certain degree and partially reflect cognitive function and activities of daily living in such patients.
2.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
3.Analyzing the heart-oriented view of the treatment of mental illness in Synopsis of Golden Chamber based on the theory of five-spirit-viscera
ZOU Peng ; Kai CHENG ; Minlong XIA ; Menghan LI ; Shuxian WANG ; Hui KONG ; Yan ZHAO ; Changming ZHAI ; Fang LU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):495-500
Mental state is an important part of the normal life activities of the human body, and it is also the most external expression and the most easily obtained information of the physical condition. The normal activities of the mind depend on the normal operation of the viscera, qi, and blood, and are a unified whole that prospers together and suffers together. The theory of the five-spirit-viscera in the Yellow Emperor’s Inner Classic revealed that the normal mental activities of the human body were dominated by the five internal organs, that is, the five internal organs were the body and the five spirits were the function. And it highlighted the viewpoint that the five internal organs store the spirits and are actually one. The heart governs the spirit and belongs to the four internal organs. On this basis, Synopsis of Golden Chamber used the internal organs to diagnose and treat mental diseases, integrating the theory of the five spirits into it, forming a unique method of diagnosis and treatment with the heart as the leading factor and regulating the qi and blood of the four internal organs. It identified the pathogenesis of diseases such as pathogenic crying, lily disease, and hysteria from five levels: heart deficiency and weak qi, heart-lung disharmony, heart-liver disharmony, the heart of the loss of the spleen nourishment, and disharmony between heart and kidney. The treatment was mainly to replenish the deficiency of the viscera and eliminate the pathogens, reflecting the characteristics of regulating the mind and calming the four internal organs. This unique view on diagnosis and treatment has profoundly influenced the diagnosis and treatment theories of mental illnesses by later doctors, and is of great significance to the current clinical treatment of such illnesses.
4.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
5.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
6.Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy.
Yue ZHANG ; Jingwen GAO ; Na LI ; Peng XU ; Shimeng QU ; Jinqian CHENG ; Mingrui WANG ; Xueru LI ; Yaheng SONG ; Fan XIAO ; Xinyu YANG ; Jihong LIU ; Hao HONG ; Ronghao MU ; Xiaotian LI ; Youmei WANG ; Hui XU ; Yuan XIE ; Tianming GAO ; Guangji WANG ; Jiye AA
Acta Pharmaceutica Sinica B 2024;14(2):667-681
Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.
7.Application progress of zebrafish(Danio rerio)model in circadian rhythm research
Youjia ZONG ; Yunong LI ; Jiabin GUO ; Hui PENG
Military Medical Sciences 2024;48(1):75-80
Circadian rhythm is one of the biorhythms formed by organisms in the process of evolution to adapt to the rotation of the earth,which is manifested as a cyclical biorhythm of about 24 hours produced by the body under the control of the internal biological clock,coordinating sleep/wakefulness,body temperature regulation,endocrine time and other activities.Long-term circadian rhythm disorders can cause increased risk of metabolic disorders,gastrointestinal diseases,neurodegenerative diseasesand other illnesses.As a typical model animal,the aquatic organism zebrafish(Danio rerio)has been widely used in experimental studies of circadian rhythm.This paper introduces in detailthe operating mechanism of zebrafish circadian clock,the influencing factors of the input system,the genes and pathways of the circadian clock,and the physiological output,summarizes the application and advantages in circadian rhythm research,finally looks forward to future research and development,in order to provide theoretical support for circadian rhythm regulation mechanism research,related drug development and disease treatment strategies.
8.Preparation,characterization,and application of acylated collagen with anhydride
Weizhao LI ; Hui ZHOU ; Xinsheng PENG ; Baohong LI
Chinese Journal of Tissue Engineering Research 2024;28(15):2430-2436
BACKGROUND:Collagen is a biomedical material with good biocompatibility,low toxicity,low immunoactivity,and high cellular affinity.However,the defects such as hydrophilicity and poor thermal stability are the key technical problems that need to be solved urgently in biomedical,tissue engineering,and other applications. OBJECTIVE:To elaborate on the preparation method,characterization,and application progress of acylated collagen. METHODS:PubMed,X-mol,and CNKI databases were used to search the literature on acylated collagen preparation methods,characterization,and application.The search time was from January 1992 to May 2023.The English search terms were"acylated collagen,modified collagen,water-soluble collagen,acetic anhydride".Chinese search terms were"acylated collagen,modified collagen,water-soluble collagen".After an initial screening of all articles according to inclusion and exclusion criteria,53 articles with high relevance were retained for review. RESULTS AND CONCLUSION:(1)The preparation of acylated collagen is mainly obtained by the acylation reaction of acid anhydride,and the reaction sites are mainly ε-amino and N-terminus-amino of collagen,and the reaction environment of acylation reaction needs to be carried out in an alkaline environment.(2)Succinic anhydride is the preferred reactant of acylated collagen.Carbonic anhydride,citric anhydride,and bifunctional modifiers with acylation ability have been excavated in recent years to meet various requirements,but it is still limited to laboratory preparation;complex preparation process is difficult to industrialize,and follow-up research is needed to continuously improve.(3)The characterization methods of acylated collagen are similar to those of collagen,but there is still a lack of standards for the water-soluble characterization of acylated collagen.(4)In recent years,acylated collagen has been gradually used in the preparation of lenses,hydrogels,and dressings,as well as cosmetic raw materials.However,there is still little research on the application of acylated collagen,and there is a lack of complete in vivo experiments to verify the practicality of acylated collagen.
9.Role of METTL3 in homocysteine-induced autophagy in mouse islet beta cells
Lingju MA ; Lexin WANG ; Hongyang CHI ; Jingwen ZHANG ; Hongjian PENG ; Chunlan GAO ; Yideng JIANG ; Hui HUANG ; Li YANG ; Shengchao MA
Chinese Journal of Tissue Engineering Research 2024;28(26):4221-4225
BACKGROUND:Hyperhomocysteinemia is closely related to the function of islet β cells,but its specific molecular mechanism is not fully understood. OBJECTIVE:To investigate the role of N6 methyltransferase-like 3(METTL3)in homocysteine(Hcy)-induced autophagy of mouse islet β cells. METHODS:The 3rd and 4th generation mouse islet β cells were taken for the experiment.(1)Cell modeling and grouping:cells in control group were not treated with Hcy,while those in homocysteine group were treated with 100 μmol/L Hcy for 48 hours.(2)The mouse islet β-cells were transfected with the plasmids overexpressing Ad-METTL3 and si-METTL3 according to the instructions of LipofectamineTM 2000.Three different interfering fragments were designed,and the one with the best interfering efficiency was verified and screened by PCR.(3)After transfection,the cells were divided into control group,Hcy group,Ad-NC(negative control)+Hcy group,Ad-METTL3+Hcy group,si-NC(negative control)+Hcy group and si-METTL3+Hcy group.(4)qRT-PCR and western blot were used to detect the expression levels of METTL3 and autophagy-related proteins LC3Ⅱ/Ⅰ and p62 in cells.Insulin level was determined by ELISA to evaluate insulin secretion capacity of islet cells.Autophagy-related proteins and insulin level were detected after overexpression and interference with METTL3. RESULTS AND CONCLUSION:Compared with the control group,the expression level of LC3Ⅱ/Ⅰ was increased(P<0.05),the expression of p62 was significantly reduced(P<0.05),and the insulin secretion capacity was significantly decreased(P<0.05)in the Hcy group.Compared with the control group,the protein and mRNA levels of METTL3 were reduced in the Hcy group(P<0.05).After METTL3 silencing in islet β cells,Hcy further upregulated the expression of LC3Ⅱ/Ⅰ(P<0.05),significantly dowregulated the expression of p62(P<0.05),and increased the insulin level(P<0.05).After overexpression of METTL3,Hcy significantly decreased the LC3Ⅱ/Ⅰ expression and increased the p62 expression in islet β cells(P<0.05).To conclude,METTL3 is involved in the Hcy-induced autophagy regulation of islet β cells and plays a role in the regulation of insulin secretion.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.


Result Analysis
Print
Save
E-mail